Metzler DE: Biochemistry. 2001, Burlington, MA, Harcourt/Academic Press, 2
Google Scholar
Alexander FW, Sandmeier E, Mehta PK, Christen P: Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994, 219: 953-960.
Article
CAS
PubMed
Google Scholar
Jansonius JN: Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol. 1998, 8: 759-769.
Article
CAS
PubMed
Google Scholar
Mehta PK, Christen P: The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 2000, 74: 129-184.
CAS
PubMed
Google Scholar
Christen P, Mehta PK: From cofactor to enzymes. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Chem Rec. 2001, 1 (6): 436-447.
Article
CAS
PubMed
Google Scholar
Gramatikova SI, Christen P: Pyridoxal 5'-phosphate-dependent catalytic antibody. J Biol Chem. 1996, 271: 30583-30586.
Article
CAS
PubMed
Google Scholar
Gramatikova SI, Christen P: Monoclonal antibodies against Nα-(5'-phosphopyridoxyl)-L-lysine. J Biol Chem. 1997, 272: 9779-9784.
Article
CAS
PubMed
Google Scholar
Golinelli-Pimpaneau B, Lüthi C, Christen P: Structural basis for D-amino acid transamination by the pyridoxal-5'-phosphate-dependent catalytic antibody 15A9. J Biol Chem. 2006, 281: 23969-23977.
Article
CAS
PubMed
Google Scholar
Vallee BL, Riordan JF: Chemical approaches to the properties of active sites of enzymes. Annu Rev Biochem. 1969, 38: 733-794.
Article
CAS
PubMed
Google Scholar
Means GE, Feeney RE: Chemical modification of proteins. 1971, San Francisco: Holden-Day
Google Scholar
Wlodawer A, Sjölin L: Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0-A resolution. Biochemistry. 1983, 22: 2720-2728.
Article
CAS
PubMed
Google Scholar
Richards FM, Wyckoff HW: Bovine pancreatic ribonuclease. The Enzymes. Edited by: Boyer PD. 1971, New York: Academic Press, IV: 647-806.
Google Scholar
Blockburn P, Moore S: Pancreatic ribonuclease. The Enzymes. Edited by: Boyer PD. 1982, New York: Academic Press, XV: 317-443. 3
Google Scholar
Eftink M, Biltonen RL: Pancreatic ribonuclease A: the most studied endoribonuclease. Hydrolytic Enzymes. Edited by: Neuberger A, Brocklehurst K. 1987, Amsterdam: Elsevier, 333-376.
Chapter
Google Scholar
Moussaoui M, Guasch A, Boix E, Cucillo CM: The role of non-catalytic binding subsites in endonuclease activity of bovine pancreatic ribonuclease A. J Biochem. 1996, 271: 4687-4692.
CAS
Google Scholar
Means GE, Feeney RE: Affinity labelling of pancreatic ribonuclease. J Biol Chem. 1971, 246: 5532-5533.
CAS
PubMed
Google Scholar
Raetz CRH, Auld DS: Schiff bases of pyridoxal phosphate with active center lysines of ribonuclease A. Biochemistry. 1972, 11: 2229-2236.
Article
CAS
PubMed
Google Scholar
Borisova SN, Matrosov VI, Shlyapnikov SV, Karpeiskii MY: Modification of ribonuclease A with pyridoxal-5'-phosphate. Mol Biol. 1974, 8: 228-236.
CAS
PubMed
Google Scholar
Riquelme P, Brown WE, Marcus F: Modification of bovine pancreatic ribonuclease A with pyridoxal 5'-phosphate. Isolation and identification of derivatives. Int J Pept Protein Res. 1975, 7 (5): 379-387.
Article
CAS
PubMed
Google Scholar
Peterson E, Sober NA: Preparation of crystalline phosphorylated derivatives of vitamin B6. J Amer Chem Soc. 1954, 76: 169-173.
Article
CAS
Google Scholar
Richardson RM, Pares X, Cuchillo CM: Chemical modification by pyridoxal 5'-phosphate and cyclohexane-1,2-dione indicates that Lys-7 and Arg-10 are involved in the p2 phosphate-binding subsite of bovine pancreatic ribonuclease A. Biochem J. 1990, 267: 593-599.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trautwein K, Halliger P, Stackhouse J, Benner SA: Site-directed mutagenesis of bovine pancreatic ribonuclease: lysine 41 and aspartate 121. FEBS Lett. 1991, 281: 275-277.
Article
CAS
PubMed
Google Scholar
de Mel SJ, Doscher MS, Martin PD, Rodier F, Edwards BF: 1.6 A structure of semisynthetic ribonuclease crystallized from aqueous ethanol. Comparison with crystals from salt solutions and with ribonuclease A from aqueous alcohol solutions. Acta Crystallogr D Biol Crystallogr. 1995, 51: 1003-1012.
Article
CAS
PubMed
Google Scholar
Boqué L, Coll MG, Ribó M, Cuchillo CM, Fita I, Vilanova M: Structure of three ribonuclease-A covalent derivatives with pyridoxal 5'-phosphate. Protein Peptide Lett. 1998, 5: 101-108.
Google Scholar
Dudkin SM, Karabachyan LV, Borisova SN, Shlyapnikov SV, Karpeisky MY, Geidarov TG: Spectral properties of phosphopyridoxyl-Lys7(41)-ribonuclease A. Biochim Biophys Acta. 1975, 386: 275-282.
Article
CAS
PubMed
Google Scholar
Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EJM: The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990, 29: 1099-1107.
Article
CAS
PubMed
Google Scholar
Marfey P: Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun. 1984, 49: 591-596.
Article
CAS
Google Scholar
Kochhar S, Christen P: The enantiomeric error frequency of aspartate aminotransferase. Eur J Biochem. 1988, 175: 433-438.
Article
CAS
PubMed
Google Scholar
Vacca RA, Giannattasio S, Graber R, Sandmeier E, Marra E, Christen P: Active-site Arg → Lys substitution alter reaction and substrate specificity of aspartate aminotransferase. J Biol Chem. 1997, 272: 21932-21937.
Article
CAS
PubMed
Google Scholar
Mouratou B, Kasper P, Gehring H, Christen P: Conversion of tyrosine phenol-lyase to dicarboxylic amino acid β-lyase, an enzyme not found in nature. J Biol Chem. 1999, 274: 1320-1325.
Article
CAS
PubMed
Google Scholar
Graber R, Kasper P, Malashkevich VN, Strop P, Gehring H, Jansonius JN, Christen P: Conversion of aspartate aminotransferase into an L-aspartate β-decarboxylase by a triple active-site mutation. J Biol Chem. 1999, 274: 31203-31208.
Article
CAS
PubMed
Google Scholar
Eliot AC, Kirsch JF: Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004, 73: 383-415.
Article
CAS
PubMed
Google Scholar
Seebeck FP, Hilvert D: Conversion of a PLP-dependent racemase into an aldolase by single active site mutation. J Am Chem Soc. 2003, 125 (34): 10158-10159.
Article
CAS
PubMed
Google Scholar
Dunathan HC: Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc Natl Acad Sci USA. 1966, 55: 712-716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oue S, Okamoto A, Yano T, Kagamiyama H: Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem. 1999, 274: 2344-2349.
Article
CAS
PubMed
Google Scholar
Rothman SC, Kirsch JF: How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase. J Mol Biol. 2003, 327: 593-608.
Article
CAS
PubMed
Google Scholar
Mehta PK, Argos P, Barbour AD, Christen P: Recognizing very distant sequence relationships among proteins by family profile analysis. Proteins. 1999, 35: 387-400.
Article
CAS
PubMed
Google Scholar
Di Donato A, Cafaro V, de Nigris M, Rizzo M, D'Alessio G: The determinants of the dimeric structure of seminal ribonuclease are located in its N-terminal region. Biochem Biophys Res Commun. 1993, 194: 1440-1445.
Article
CAS
PubMed
Google Scholar
Kunkel TA: Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA. 1985, 82: 488-492.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cafaro V, Bracale A, Di Maro A, Sorrentino S, D'Alessio G, Di Donato A: New muteins of RNase A with enhanced antitumor action. FEBS Lett. 1998, 437: 149-152.
Article
CAS
PubMed
Google Scholar
Kunitz M: Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950, 33: 349-362.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sela M, Anfinsen CB: Some spectrophotometric and polarimetric experiments with ribonuclease. Biochim Biophys Acta. 1957, 24: 229-235.
Article
CAS
PubMed
Google Scholar
Emsley P, Cowtan C: Model-Building Tools for Molecular Graphics. Acta Cryst. 2004, D60: 2126-2132.
CAS
Google Scholar
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC: PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002, 58 (Pt 11): 1948-1954.
Article
PubMed
Google Scholar
Smyth DG, Stein WH, Moore S: The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J Biol Chem. 1963, 238: 227-234.
CAS
PubMed
Google Scholar