Stevenson M, Pandor A, Martyn-St James M, Rafia R, et al. Sepsis: the Light cycler SeptiFast test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation. Health Technol Assess. 2016;20(46):1–246.
Article
Google Scholar
Lanziotti VS, Póvoa P, Soares M, et al. Use of biomarkers in pediatric sepsis: literature review. Rev Bras Ter Intensiva. 2016;28(4):472–82.
Article
Google Scholar
Heffner A, Mahapatra S. Shock, Septic (Sepsis). StatPearls. In: Treasure Island (FL): StatPearls publishing; 2017.
Google Scholar
Prucha M, Bellingan G, Zazula R. Sepsis biomarkers. ClinChimActa. 2015;440:97–103.
CAS
Google Scholar
Dupuy AM, Philioart F, Pean Y, Lasocki S, Charles PE, et al. Role of biomarkers in the management of antibiotic therapy: an expert panel review: I currently available biomarkers for clinical use in acute infections. Ann Intensive Care. 2013;3(1):22.
Article
Google Scholar
Lin WW, Hsieh SL. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol. 2011;81(7):838–47.
Article
CAS
Google Scholar
Hou YQ, Xu P, Zhang M, Han D, Peng L, et al. Serum decoy receptor 3, a potential new biomarker for sepsis. ClinChimActa. 2012;413(7–8):744–8.
CAS
Google Scholar
Liang D, Hou Y, Lou X, Chen H. Decoy receptor 3 improves survival in experimental Sepsis by suppressing the inflammatory response and lymphocyte apoptosis. PLoS One. 2015;10(6):e0131680.
Article
Google Scholar
Shibata T, Nakashima F, Honda K, Lu YJ, Kondo T, et al. Toll-like receptors as a target of food-derived anti-inflammatory compounds. J Biol Chem. 2014;289(47):32757–72.
Article
CAS
Google Scholar
Hoang M, Potter JA, Gysler SM, Han CS, Guller S, et al. Human fetal membranes generate distinct cytokine profiles in response to bacterial toll-like receptor and nod-like receptor agonists. Biol Reprod. 2014;90(2):39.
Article
Google Scholar
Beutler BA. TLRs and innate immunity. Blood. 2009;113(7):1399–407.
Article
CAS
Google Scholar
Foley NM, Wang J, Redmond HP, Wang JH. Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res. 2015;2(1).
Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of themammalian immune response. Immunology. 2000;101(1):1–10.
Article
CAS
Google Scholar
Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol. 2013;34(3):129–36.
Article
CAS
Google Scholar
Toda M, Kawamot T, Ueha T, Kishimoto K, Hara H, et al. ‘Decoy’ and ‘non-decoy’ functions of DcR3 promotemalignant potential in humanmalignant fibrous histiocytoma cells. Int J Oncol. 2013;43:703–12.
Article
CAS
Google Scholar
Chen L, Tian X, Li W, Agarwal A, Zhuang G. Expressions of Fas/DcR3 and RGD-FasLmediatedapo-ptosis in pituitary adenomas. Neurol India. 2009;57:28–30.
Article
Google Scholar
Hsieh SL, Lin WW. Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions. J Biomed Sci. 2017;24(1):39.
Article
Google Scholar
Lee CS, Hu CY, Tsai HF, Wu CS, Hsieh SL, et al. Elevated serumdecoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. ClinExpImmunol. 2008;151:383–90.
CAS
Google Scholar
Chen CY, Yang KY, Chen MY, Chen HY, Lin MT, et al. Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distresssyndrome. Am J RespirCrit Care Med. 2009;180:751–60.
Article
CAS
Google Scholar
Cardinale CJ, Wei Z, Panossian S, Wang F, Kim CE, et al. Targeted resequencing identifies defective variants of decoy receptor 3 in pediatric-onset inflammatory bowel disease. Genes Immun. 2013;14(7):447–52.
Article
CAS
Google Scholar
Tateishi K, Miura Y, Hayashi S, Takahashi M, Kurosaka M. DcR3 protects THP-1 macrophages from apoptosis by increasing integrin alpha4. Biochem Biophys Res Commun. 2009;389(4):593–8.
Article
CAS
Google Scholar
Yang CR, Hsieh SL, Ho FM, Lin WW. Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol. 2005;174(3):1647–56.
Article
CAS
Google Scholar
Wu YY, Chang YC, Hsu TL, Hsieh SL, Lai MZ. Sensitization of cells to TRAIL-induced apoptosis by decoy receptor 3. J Biol Chem. 2004;279(42):44211–8.
Article
CAS
Google Scholar
Yang CR, Hsieh SL, Teng CM, Ho FM, Su WL, Lin WW. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res. 2004;64(3):1122–9.
Article
CAS
Google Scholar
Yao YM, Luan YY, Zhang QH, Sheng ZY. Pathophysiological aspects of sepsis: an overview. Methods Mol Bio. 2015;1237:5–15.
Article
CAS
Google Scholar
Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come fromand is it still rele-vant today? Virulence. 2014;5(1):20–6.
Article
Google Scholar
Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: mak-ing sense of microbial infections. Cell Host Microbe. 2008;3(6):352–63.
Article
CAS
Google Scholar
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
Article
CAS
Google Scholar
Sellge G, Kufer TA. PRR-signaling pathways: learning from microbial tactics. Semin Immunol. 2015;27(2):75–84.
Article
CAS
Google Scholar
Da Silva CJ, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. JBiolChem. 2001;276:21129–35.
Google Scholar
Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol. 2002;168:1435–40.
Article
CAS
Google Scholar
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell toll-like receptor pathways in sepsis. Innate Immunity. 2015;21(8):827–46.
Article
CAS
Google Scholar
Schorr CA, Dellinger RP. The surviving Sepsis campaign: past, present and future. Trends Mol Med. 2014;20(4):192–4.
Article
Google Scholar
Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for toll-like receptors. Nature. 2002;420:329–33.
Article
CAS
Google Scholar
Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002;420:324–9.
Article
CAS
Google Scholar
Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13:679–92.
Article
CAS
Google Scholar
Ye X, Ding J, Zhou X, Chen G, Liu SF. Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med. 2008;205:1303–15.
Article
CAS
Google Scholar
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kin-ases. Microbiol Mol Biol Rev. 2011;75:50–83.
Article
CAS
Google Scholar
Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochem Biophys Acta. 2007;177(3):1213–26.
Article
Google Scholar
Glatz G, Gogl G, Alexa A, Reményi A. Structural mechanism for the specific assembly and activation of the extracellular signal regu-lated kinase 5 (ERK5) module. J Biol Chem. 2013;288:8596–609.
Article
CAS
Google Scholar
Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315.
Article
CAS
Google Scholar
Mody N, Leitch J, Armstrong C, Dixon J, Cohen P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 2001;502:21–4.
Article
CAS
Google Scholar
Ho CH, Hsu CF, Fong PF, Tai SK, Hsieh SL, et al. Epstein-Barr virus transcription activator Rtaupregulates decoy receptor 3 expression by binding to its promoter. J Virol. 2007;81(9):4837–47.
Article
CAS
Google Scholar
Xia LM, Tian DA, Huang WJ, Zhu H, Wang J, et al. Upregulation of IL-23 expression in patients with chronic hepatitis B is mediated by the HBx/ERK/NF-kappa B pathway. J Immunol. 2012;188(2):753–64.
Article
CAS
Google Scholar
Chen P, Yang C. Decoy receptor 3 expression in AsPC-1 human pancreatic adenocarcinoma cells via the phosphatidylinositol 3kinase,Akt,and NF-kappa B-dependent pathway. J Immunol. 2008;181(12):8441–9.
Article
CAS
Google Scholar
Wu NL, Huang DY, Hsieh SL, Hsiao CH, Lee TA, Lin WW. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis. Biochim Biophys Acta. 2013;1832(10):1538–48.
Article
CAS
Google Scholar