Qin GP. China poisonous snake research. Nanning: Guangxi Science and Technology Press; 1998.
Google Scholar
Zhao EM. Snakes of China. Hefei: Anhui Science and Technology Publishing Press; 2006.
Google Scholar
Chen CC, Yang CM, Hu FR, Lee YC. Penetrating ocular injury caused by venomous snakebite. Am J Ophthalmol. 2005;140:544–6.
Article
PubMed
Google Scholar
Li QB, Yu QS, Huang GW, Tokeshi Y, Nakamura M, et al. Hemostatic disturbances observed in patients with snakebite in south China. Toxicon. 2000;38:1355–66.
Article
CAS
PubMed
Google Scholar
White J. Snake venoms and coagulopathy. Toxicon. 2005;45:951–67.
Article
CAS
PubMed
Google Scholar
Qinghua L, Xiaowei Z, Wei Y, Chenji L, Yijun H, et al. A catalog for transcripts in the venom gland of the D. acutus: identification of the toxins potentially involved in coagulopathy. Biochem Biophys Res Commun. 2006;341:522–31.
Article
PubMed
Google Scholar
Markland FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.
Article
CAS
PubMed
Google Scholar
Hodgson WC, Wickramaratna JC. Snake venoms and their toxins: an Australian perspective. Toxicon. 2006;48:931–40.
Article
CAS
PubMed
Google Scholar
Sajevic T, Leonardi A, Krizaj I. Haemostatically active proteins in snake venoms. Toxicon. 2011;57:627–45.
Article
CAS
PubMed
Google Scholar
Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45:969–85.
Article
CAS
PubMed
Google Scholar
Harvey AL, Barfaraz A, Thomson E, Faiz A, Preston S, et al. Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks. Toxicon. 1994;32:257–65.
Article
CAS
PubMed
Google Scholar
Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, et al. Neurotoxicity in Sri Lankan Russell's viper (D. russelii) envenoming is primarily due to U1-viperitoxin-Dr1a, a pre-synaptic neurotoxin. Neurotox Res. 2017;31(1):11–9.
Article
CAS
PubMed
Google Scholar
Kumar JR, Basavarajappa BS, Vishwanath BS, Gowda TV. Biochemical and pharmacological characterization of three toxic phospholipase A2s from D. russelii snake venom. Comp Biochem Physiol C Toxicol Pharmacol. 2015;168:28–38.
Article
CAS
PubMed
Google Scholar
Tuladhar BR, Womack MD, Naylor RJ. Pharmacological characterization of the 5-HT receptor-mediated contraction in the mouse isolated ileum. Br J Pharmacol. 2000;131(8):1716–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada T, Narai A, Matsunaga S, Fusetani N, Shimizu M. Assessment of the marine toxins by monitoring the integrity of human intestinal Caco-2 cell monolayers. Toxicol in Vitro. 2000;14(3):219–26.
Article
CAS
PubMed
Google Scholar
Paton WD, Zar MA. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol. 1968;194:13–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aniya Y, Sakanashi M, Noguchi K, Matsusaki K. Heat stable protein with anticoagulant and smooth muscle contractile actions isolated from Habu (Trimeresurus flavoviridis) venom. Jpn J Pharmacol. 1985;39:437–41.
Article
CAS
PubMed
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
CAS
PubMed
Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.
Article
CAS
PubMed
Google Scholar
Rodrigues VM, Soares AM, Guerra-Sa R, Rodrigues V, Fontes MRM, et al. Strucutral and functional characterization of neuwiedase, a nonhemorrhagic fibrinogenolytic metalloprotease from B. neuwiedi snake venom. Arch Biochem Biophys. 2000;381:213–24.
Article
CAS
PubMed
Google Scholar
Habermann E, Hardt KL. A sensitive and specific plate test for the quantitation of phospholipases. Anal Biochem. 1972;50:163–73.
Article
CAS
PubMed
Google Scholar
Kondo H, Kondo S, Ikezawa H, Murata R. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn J Med Sci Biol. 1960;13:43–52.
Article
CAS
PubMed
Google Scholar
Nikai T, Kato C, Komori Y, Nodani H, Homma M, Sugihara H. Primary structure of Ac1-proteinase from the venom of D. acutus (hundred-pace snake) from Taiwan. Biol Pharm Bull. 1995;18(4):631–3.
Article
CAS
PubMed
Google Scholar
Balhara KS, Stolbach A. Marine envenomations. Emerg Med Clin North Am. 2014;32:223–43.
Article
PubMed
Google Scholar
Hart AJ, Smith AI, Reeve S, Hodgson WC. Isolation and characterisation of acanmyotoxin-2 and acanmyotoxin-3, myotoxins from the venom of the death adder Acanthophis sp. Seram. Biochem Pharmacol. 2005;70:1807–13.
Article
CAS
PubMed
Google Scholar
Kuruppu S, Isbister GK, Hodgson WC. Phospholipase A2-dependent effects of the venom from the new Guinean small-eyed snake Micropechis ikaheka. Muscle Nerve. 2005;32:81–7.
Article
CAS
PubMed
Google Scholar
Lumsden NG, Banerjee Y, Kini RM, Kuruppu S, Hodgson WC. Isolation and characterization of rufoxin, a novel protein exhibiting neurotoxicity from venom of the psammophiine, Rhamphiophis oxyrhynchus (Rufous beaked snake). Neuropharmacology. 2007;52:1065–70.
Article
CAS
PubMed
Google Scholar
Lumsden NG, Fry BG, Ventura S, Kini RM, Hodgson WC. Pharmacological characterisation of a neurotoxin from the venom of Boiga dendrophila (mangrove catsnake). Toxicon. 2005;45:329–34.
Article
CAS
PubMed
Google Scholar
Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, et al. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23:534–45.
Article
CAS
PubMed
Google Scholar
Petrova SD, Atanasov VN, Balashev K. Vipoxin and its components: structure-function relationship. Adv Protein Chem Struct Biol. 2012;87:117–53.
Article
CAS
PubMed
Google Scholar
Tamiya N, Yagi T. Studies on sea snake venom. Proc Jpn Acad Ser B. 2011;87:41–52.
Article
CAS
Google Scholar
Venkatesh M, Prasad N, Sing T, Gowda V. Purification, characterization, and chemical modification of neurotoxic peptide from D. russelii snake venom of India. J Biochem Mol Toxicol. 2013;27:295–304.
Article
CAS
PubMed
Google Scholar
Wickramaratna JC, Fry BG, Aguilar MI, Kini RM, Hodgson WC. Isolation and pharmacological characterization of a phospholipase a 2 myotoxin from the venom of the irian jayan death adder (A. rugosus). Br J Pharmacol. 2003;138:333–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickramaratna JC, Hodgson WC. A pharmacological examination of venoms from three species of death adder (A. antarcticus, A. praelongus and A. pyrrhus). Toxicon. 2001;39:209–16.
Article
CAS
PubMed
Google Scholar
Wickramaratna JC, Fry BG, Hodgson WC. Species-dependent variations in the in vitro myotoxicity of death adder (Acanthophis) venoms. Toxicol Sci. 2003;74:352–60.
Article
CAS
PubMed
Google Scholar
Casewell NR, Wagstaff SC, Wüster W, Cook DA, Bolton FM, et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A. 2014;111:9205–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moura-da-Silva AM, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des. 2007;13:2893–905.
Article
CAS
PubMed
Google Scholar
Bernardoni JL, Sousa LF, Wermelinger LS, Lopes AS, Prezoto BC, et al. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS One. 2014;9:e109651.
Article
PubMed
PubMed Central
Google Scholar
Siigur E, Tõnismägi K, Trummal K, Samel M, Vija H, et al. Factor X activator from vipera lebetina snake venom, molecular characterization and substrate specificity. Biochim Biophys Acta. 2001;1568:90–8.
Article
CAS
PubMed
Google Scholar
Modesto JC, Junqueira-de-Azevedo IL, Neves-Ferreira AG, Fritzen M, Oliva ML, et al. Insularinase a, a prothrombin activator from Bothrops insularis venom, is a metalloprotease derived from a gene encoding protease and disintegrin domains. Biol Chem. 2005;386:589–600.
PubMed
Google Scholar
Kamiguti AS, Slupsky JR, Zuzel M, Hay CR. Properties of fibrinogen cleaved by jararhagin, a metalloproteinase from the venom of Bothrops jararaca. Thromb Haemost. 1994;72:244–9.
CAS
PubMed
Google Scholar
Escalante T, Shannon J, Moura-da-Silva AM, Gutiérrez JM, Fox JW. Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: a biochemical and immunohistochemical study. Arch Biochem Biophys. 2006;455:144–53.
Article
CAS
PubMed
Google Scholar
Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275:3016–30.
Article
CAS
PubMed
Google Scholar
Seo T, Sakon T, Nakazawa S, Nishioka A, Watanabe K, et al. Haemorrhagic snake venom metalloproteases and human ADAMs cleave LRP5/6, which disrupts cell-cell adhesions in vitro and induces haemorrhage in vivo. FEBS J. 2017;284:1657–71.
Savanur A, Ali SA, Munir I, Abbasi A, Alam M, et al. Pharmacological and biochemical studies on the venom of a clinically important viper snake (Echis carinatus) of Pakistan. Toxicon. 2014;80:47–57.
Article
CAS
PubMed
Google Scholar