Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61(1):263–89. doi:10.1146/annurev-arplant-042809-112315.
Article
CAS
PubMed
Google Scholar
Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, et al. Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym. 2002;48:29–39.
Article
CAS
Google Scholar
Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conv Manage. 2010;51(7):1412–21.
Article
CAS
Google Scholar
Yamabhai M, S S-U, W S, Haltrich D. Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol. 2014:1-11 [Epub ahead of print].
Schröder R, Nicolas P, Vincent SJF, Fischer M, Reymond S, Redgwell RJ. Purification and characterization of a galactoglucomannan from kiwi fruit (Actinidia deliciosa). Carbohydr Res. 2001;331(3):291–306.
Article
PubMed
Google Scholar
Prakash R, Johnston SL, Boldingh HL, Redgwell RJ, Atkinson RG, Melton LD, et al. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-β-mannanase. J Plant Physiol. 2012;2012:1125–33.
Article
Google Scholar
Ray S, Vigouroux J, Quémener B, Bonnin E, Layahe M. Novel and diverse fine structures in LiCl-DMSO extracted apple hemicellulose. Carbohydr Polym. 2014;108:46–57.
Article
CAS
PubMed
Google Scholar
Rodríguez-Gacio MC, Iglesias-Fernández R, Carbonero P, Matilla ÁJ. Softening-up mannan-rich cell walls. J Exp Bot. 2012;63(11):3976–88.
Article
Google Scholar
Gallagher E, Gormley TR, Arendt EK. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Tech. 2004;15:143–52.
Article
CAS
Google Scholar
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ. Locust bean gum: a versatile biopolymer. Carbohydr Polym. 2013;94:814–21.
Article
CAS
PubMed
Google Scholar
Tomlin J, Read NW, Edwards CA, Duerden BI. The degradation of guar gum by a faecal incubation system. Br J Nutr. 1986;55:481–6.
Article
CAS
PubMed
Google Scholar
Okubo T, Ishihara N, Takahashi H, Fujisawa T, Mujo K, Yamamoto T. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci Biotechnol Biochem. 1994;58:1364–9.
Article
CAS
Google Scholar
Berger K, Falck P, Linninge C, Nilsson U, Axling U, Grey C, et al. Cereal byproducts have prebiotic potential in mice fed a high-fat diet. J Agric Food Chem. 2014;62(32):8169–78. doi:10.1021/jf502343v.
Article
CAS
PubMed
Google Scholar
Willför S, Sundberg K, Tenkanen M, Holmbom B. Spruce-derived mannans - A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym. 2008;72:197–210.
Article
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aspeborg H, Coutinho P, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012;12(1):186.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rye CS, Withers SG. Glycosidase mechanisms. Curr Opin Chem Biol. 2000;4:573–80.
Article
CAS
PubMed
Google Scholar
Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol. 2013;23(5):669–77.
Article
CAS
PubMed
Google Scholar
Sakon J, Irwin D, Wilson DB, Karplus KA. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997;4:810–8.
Article
CAS
PubMed
Google Scholar
Paineau D, Carcano D, Leyer G, Darguy S, Alyanakian MA, Simoneau G, et al. Effects of seven potential probiotic strains on specific immune responses in healthy adults: A double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol. 2008;53:107–13.
Article
CAS
PubMed
Google Scholar
Ponyi T, Szabó L, Nagy T, Orosz L, Simpson PJ, Williamson MP, et al. Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry. 2000;39:985–91.
Article
CAS
PubMed
Google Scholar
Hogg D, Pell G, Dupree P, Goubet F, Martin-Orúe SM, Armand S, et al. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J. 2003;371:1027–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barrangou R, Briczinski EP, Traeger LL, Loquasto JR, Richards M, Horvath PC-M. A C et al. Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol. 2009;191:4144–51.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stålbrand H, Siika-aho M, Tenkanen M, Viikari L. Purification and characterization of two β-mannanases from Trichoderma reesei. J Biotechnol. 1993;29(3):229–42. http://dx.doi.org/10.1016/0168-1656(93)90055-R.
Article
Google Scholar
Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Abou Hachem M, et al. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Biochim Biophys Acta. 2011;1814(12):1720–9.
Article
CAS
PubMed
Google Scholar
Hekmat O, Lo Leggio L, Rosengren A, Kamarauskaite J, Kolenova K, Stålbrand H. Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-β-1,4-mannanase: mannosyl binding promoted at subsite −2 and demoted at subsite −3. Biochemistry. 2010;49(23):4884–96. doi:10.1021/bi100097f.
Article
CAS
PubMed
Google Scholar
Abou Hachem M, Nordberg Karlsson E, Bartonek-Roxâ E, Raghothama S, Simpson PJ, Gilbert HJ, et al. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J. 2000;345:53–60.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kulcinskaja E, Rosengren A, Ibrahim R, Kolenová K, Stålbrand H. Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol. 2013;79(1):133–40. doi:10.1128/aem.02118-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou HM. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol Microbiol. 2013;90:1100–12.
Article
CAS
PubMed
Google Scholar
Rosengren A, Hägglund P, Anderson L, Pavon-Orozco P, Peterson-Wulff R, Nerinckx W, et al. The role of subsite +2 of the Trichoderma reesei β-mannanase TrMan5A in hydrolysis and transglycosylation. Biocatal Biotransform. 2012;30(3):338–52. doi:10.3109/10242422.2012.674726.
Article
CAS
Google Scholar
Yin Y, Mao X, Yang JC, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:445–51.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huson DH, Scomavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–7.
Article
PubMed
Google Scholar
Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, et al. High-resolution native and complex structure of thermostable β-mannanase from Thermomonospora fusca – substrate specificity in glycosyl hydrolase family 5. Structure. 1998;6:1433–44.
Article
CAS
PubMed
Google Scholar
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007;Ch 2:Unit 2–9.
Google Scholar
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, et al. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol. 1999;285:1711–33.
Article
CAS
PubMed
Google Scholar
Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A. A study of quality measures for protein threading models. BMC Bioinformatics. 2001;2:5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lo Leggio L, Larsen S. The 1.62 Å structure of Thermoascus auranticus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett. 2002;523:103–8.
Article
CAS
PubMed
Google Scholar
Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.
Article
CAS
PubMed
Google Scholar
Koropatkin N, Cameron E, Martens E. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.
PubMed Central
CAS
PubMed
Google Scholar
Kawaguchi K, Senoura T, Ito S, Taira T, Ito H, Wasaki J, et al. The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch Microbiol. 2014;196:17–23.
Article
CAS
PubMed
Google Scholar
Le Nours J, Anderson L, Stoll D, Stålbrand H, Lo LL. The structure and characterization of a modular endo-1,4-β-mannanase from Cellulomonas fimi. Biochemistry. 2005;44:12700–8.
Article
PubMed
Google Scholar
Rosengren A, Reddy SK, Sjöberg JS, Aurelius O, Logan D, Kolenová K, et al. An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl Microbiol Biotechnol. 2014;98(24):10091–104. doi:10.1007/s00253-014-5871-8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stoll D, Boraston A, Stålbrand H, McLean BW, Kilburn DG, Warren RAJ. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett. 2000;183:265–9.
Article
CAS
PubMed
Google Scholar
Boraston AB, Revett TJB. C M, Nurizzo D, Davies GJ. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure. 2003;11:665–75.
Article
CAS
PubMed
Google Scholar
Mizutani K, Fernandes VO, Karita S, Luís AS, Sakka M, Kimura T, et al. Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Appl Environ Microbiol. 2012;78:4781–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Christiansen C, Abou Hachem M, Glaring MA, Viksø-Nielsen A, Sigurskjold BW, Svensson B, et al. A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett. 2009;583:1159–63.
Article
CAS
PubMed
Google Scholar
Glaring MA, Baumann MJ, Abou Hachem M, Nakai H, Nakai N, Santelia D, et al. Starch-binding domains in the CBM45 family – low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism. FEBS J. 2011;278:1175–85.
Article
CAS
PubMed
Google Scholar
Santos CR, Paiva JH, Sforça ML, Neves JL, Navarro RZ, Cota J, et al. Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem J. 2012;441:95–104.
Article
CAS
PubMed
Google Scholar
Wang Y, Yuan H, Wang J, Yu Z. Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. Bioresour Technol. 2009;100:345–9.
Article
CAS
PubMed
Google Scholar
Raghothama S, Simpson PJ, Szabó L, Nagy T, Gilbert HJ, Williamson MP. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry. 2000;39:978–84.
Article
CAS
PubMed
Google Scholar
Payne CM, Jiang W, Shirts MR, Himmel ME, Crowley MF, Beckham GT. Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy. J Am Chem Soc. 2013;135:18831–9.
Article
CAS
PubMed
Google Scholar
Kumagai Y, Kawakami K, Uraji M, Hatanaka T. Binding of bivalent ions to actinomycete mannanase is accompanied by conformational change and is a key factor in its thermal stability. Biochim Biophys Acta. 1834;2013:301–7.
Google Scholar
Armand S, Andrews SR, Charnock SJ, Gilbert HJ. Influence of the aglycone region of the substrate binding cleft of Pseudomonas xylanase 10A on catalysis. Biochemistry. 2001;40:7404–9.
Article
CAS
PubMed
Google Scholar
Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K. Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym. 2003;53:183–9.
Article
CAS
Google Scholar
Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, et al. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb Cell Fact. 2009;8:59.
Article
PubMed
Google Scholar
Chen X, Cao Y, Ding Y, Lu W, Li D. Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J Biotechnol. 2007;128:452–61.
Article
CAS
PubMed
Google Scholar
Politz O, Krah M, Thomsen KK, Borriss R. A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol. 2000;53:715–21.
Article
CAS
PubMed
Google Scholar