Figueroa JD, Hayman MJ: The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene. Biochem Biophys Res Commun. 2004, 319 (4): 1105-1109. 10.1016/j.bbrc.2004.05.096.
Article
CAS
PubMed
Google Scholar
Folk P, Puta F, Skruzny M: Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cell Mol Life Sci. 2004, 61 (6): 629-640. 10.1007/s00018-003-3215-4.
Article
CAS
PubMed
Google Scholar
Kostrouchova M, Housa D, Kostrouch Z, Saudek V, Rall JE: SKIP is an indispensable factor for Caenorhabditis elegans development. Proc Natl Acad Sci USA. 2002, 99 (14): 9254-9259. 10.1073/pnas.112213799.
Article
PubMed Central
CAS
PubMed
Google Scholar
Negeri D, Eggert H, Gienapp R, Saumweber H: Inducible RNA interference uncovers the Drosophila protein Bx42 as an essential nuclear cofactor involved in Notch signal transduction. Mech Dev. 2002, 117 (1–2): 151-162.
Article
CAS
PubMed
Google Scholar
Dahl R, Wani B, Hayman MJ: The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. Oncogene. 1998, 16 (12): 1579-1586. 10.1038/sj.onc.1201687.
Article
CAS
PubMed
Google Scholar
Albers M, Diment A, Muraru M, Russell CS, Beggs JD: Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA. 2003, 9 (1): 138-150. 10.1261/rna.2119903.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leong GM, Subramaniam N, Issa LL, Barry JB, Kino T, Driggers PH, Hayman MJ, Eisman JA, Gardiner EM: Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem Biophys Res Commun. 2004, 315 (4): 1070-1076. 10.1016/j.bbrc.2004.02.004.
Article
CAS
PubMed
Google Scholar
Leong GM, Subramaniam N, Figueroa J, Flanagan JL, Hayman MJ, Eisman JA, Kouzmenko AP: Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J Biol Chem. 2001, 276 (21): 18243-18248. 10.1074/jbc.M010815200.
Article
CAS
PubMed
Google Scholar
Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C, Huang B, Fenger U, Niehrs C, Chen YG: Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem. 2010, 285 (14): 10890-10901. 10.1074/jbc.M109.058347.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Zhang L, Jones KA: SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes Dev. 2011, 25 (7): 701-716. 10.1101/gad.2002611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edwards DP, Wardell SE, Boonyaratanakornkit V: Progesterone receptor interacting coregulatory proteins and cross talk with cell signaling pathways. J Steroid Biochem Mol Biol. 2002, 83 (1–5): 173-186.
Article
CAS
PubMed
Google Scholar
Baudino TA, Kraichely DM, Jefcoat SC, Winchester SK, Partridge NC, MacDonald PN: Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription. J Biol Chem. 1998, 273 (26): 16434-16441. 10.1074/jbc.273.26.16434.
Article
CAS
PubMed
Google Scholar
Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN: Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription. J Biol Chem. 2001, 276 (44): 40614-40620. 10.1074/jbc.M106263200.
Article
CAS
PubMed
Google Scholar
Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN: Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J Biol Chem. 2003, 278 (37): 35325-35336. 10.1074/jbc.M305191200.
Article
CAS
PubMed
Google Scholar
Barry JB, Leong GM, Church WB, Issa LL, Eisman JA, Gardiner EM: Interactions of SKIP/NCoA-62, TFIIB, and retinoid X receptor with vitamin D receptor helix H10 residues. J Biol Chem. 2003, 278 (10): 8224-8228. 10.1074/jbc.C200712200.
Article
CAS
PubMed
Google Scholar
Kang MR, Lee SW, Um E, Kang HT, Hwang ES, Kim EJ, Um SJ: Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells. Nucleic Acids Res. 2010, 38 (3): 822-831. 10.1093/nar/gkp1056.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bres V, Gomes N, Pickle L, Jones KA: A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 2005, 19 (10): 1211-1226. 10.1101/gad.1291705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bres V, Yoshida T, Pickle L, Jones KA: SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation. Mol Cell. 2009, 36 (1): 75-87. 10.1016/j.molcel.2009.08.015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M: Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009, 138 (2): 245-256. 10.1016/j.cell.2009.04.056.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC: Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol. 2010, 42 (6): 813-827. 10.1016/j.biocel.2009.11.013.
Article
CAS
PubMed
Google Scholar
Heinlein CA, Chang C: Androgen receptor in prostate cancer. Endocr Rev. 2004, 25 (2): 276-308. 10.1210/er.2002-0032.
Article
CAS
PubMed
Google Scholar
Gelmann EP: Molecular biology of the androgen receptor. J Clin Oncol. 2002, 20 (13): 3001-3015. 10.1200/JCO.2002.10.018.
Article
CAS
PubMed
Google Scholar
Dehm SM, Tindall DJ: Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol. 2007, 21 (12): 2855-2863. 10.1210/me.2007-0223.
Article
CAS
PubMed
Google Scholar
Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007, 27 (3): 380-392. 10.1016/j.molcel.2007.05.041.
Article
PubMed Central
PubMed
Google Scholar
Heinlein CA, Chang C: Androgen receptor (AR) coregulators: an overview. Endocr Rev. 2002, 23 (2): 175-200. 10.1210/er.23.2.175.
Article
CAS
PubMed
Google Scholar
Gao W, Bohl CE, Dalton JT: Chemistry and structural biology of androgen receptor. Chem Rev. 2005, 105 (9): 3352-3370. 10.1021/cr020456u.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langley E, Kemppainen JA, Wilson EM: Intermolecular NH2-/carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity. J Biol Chem. 1998, 273 (1): 92-101. 10.1074/jbc.273.1.92.
Article
CAS
PubMed
Google Scholar
He B, Wilson EM: The NH(2)-terminal and carboxyl-terminal interaction in the human androgen receptor. Mol Genet Metab. 2002, 75 (4): 293-298. 10.1016/S1096-7192(02)00009-4.
Article
CAS
PubMed
Google Scholar
Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM: Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol. 1995, 9 (2): 208-218. 10.1210/me.9.2.208.
CAS
PubMed
Google Scholar
He B, Kemppainen JA, Wilson EM: FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem. 2000, 275 (30): 22986-22994. 10.1074/jbc.M002807200.
Article
CAS
PubMed
Google Scholar
He B, Bowen NT, Minges JT, Wilson EM: Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2. J Biol Chem. 2001, 276 (45): 42293-42301. 10.1074/jbc.M107492200.
Article
CAS
PubMed
Google Scholar
McKenna NJ, Lanz RB, O’Malley BW: Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999, 20 (3): 321-344. 10.1210/er.20.3.321.
CAS
PubMed
Google Scholar
Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P: The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell. 1989, 59 (3): 477-487. 10.1016/0092-8674(89)90031-7.
Article
CAS
PubMed
Google Scholar
Danielian PS, White R, Lees JA, Parker MG: Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 1992, 11 (3): 1025-1033.
PubMed Central
CAS
PubMed
Google Scholar
Dehm SM, Tindall DJ: Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem. 2006, 281 (38): 27882-27893. 10.1074/jbc.M605002200.
Article
CAS
PubMed
Google Scholar
A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999, 97 (2): 161-163.
Saitoh M, Takayanagi R, Goto K, Fukamizu A, Tomura A, Yanase T, Nawata H: The presence of both the amino- and carboxyl-terminal domains in the AR is essential for the completion of a transcriptionally active form with coactivators and intranuclear compartmentalization common to the steroid hormone receptors: a three-dimensional imaging study. Mol Endocrinol. 2002, 16 (4): 694-706. 10.1210/me.16.4.694.
Article
CAS
PubMed
Google Scholar
Handwerger KE, Gall JG: Subnuclear organelles: new insights into form and function. Trends Cell Biol. 2006, 16 (1): 19-26. 10.1016/j.tcb.2005.11.005.
Article
CAS
PubMed
Google Scholar
Lamond AI, Spector DL: Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. 2003, 4 (8): 605-612. 10.1038/nrm1172.
Article
CAS
PubMed
Google Scholar
Mintz PJ, Patterson SD, Neuwald AF, Spahr CS, Spector DL: Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999, 18 (15): 4308-4320. 10.1093/emboj/18.15.4308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Need EF, Scher HI, Peters AA, Moore NL, Cheong A, Ryan CJ, Wittert GA, Marshall VR, Tilley WD, Buchanan G: A novel androgen receptor amino terminal region reveals two classes of amino/carboxyl interaction-deficient variants with divergent capacity to activate responsive sites in chromatin. Endocrinology. 2009, 150 (6): 2674-2682. 10.1210/en.2008-1181.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simental JA, Sar M, Lane MV, French FS, Wilson EM: Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem. 1991, 266 (1): 510-518.
CAS
PubMed
Google Scholar
Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature. 1989, 340 (6230): 245-246. 10.1038/340245a0.
Article
CAS
PubMed
Google Scholar
Chien CT, Bartel PL, Sternglanz R, Fields S: The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA. 1991, 88 (21): 9578-9582. 10.1073/pnas.88.21.9578.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abankwa D, Vogel H: A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci. 2007, 120 (Pt 16): 2953-2962.
Article
CAS
PubMed
Google Scholar
Patterson GH, Piston DW, Barisas BG: Forster distances between green fluorescent protein pairs. Anal Biochem. 2000, 284 (2): 438-440. 10.1006/abio.2000.4708.
Article
CAS
PubMed
Google Scholar
Vogel SS, Thaler C, Koushik SV: Fanciful FRET. Sci STKE. 2006, 2006 (331): re2-
PubMed
Google Scholar
Berney C, Danuser G: FRET or no FRET: a quantitative comparison. Biophys J. 2003, 84 (6): 3992-4010. 10.1016/S0006-3495(03)75126-1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Melcak I, Cermanova S, Jirsova K, Koberna K, Malinsky J, Raska I: Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell. 2000, 11 (2): 497-510.
Article
PubMed Central
CAS
PubMed
Google Scholar
Misteli T: Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci. 2000, 113 (Pt 11): 1841-1849.
CAS
PubMed
Google Scholar
Spector DL, Lamond AI: Nuclear speckles. Cold Spring Harb Perspect Biol. 2011, 3 (2):
Zhao Y, Goto K, Saitoh M, Yanase T, Nomura M, Okabe T, Takayanagi R, Nawata H: Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor. J Biol Chem. 2002, 277 (33): 30031-30039. 10.1074/jbc.M203811200.
Article
CAS
PubMed
Google Scholar
Faus H, Meyer HA, Huber M, Bahr I, Haendler B: The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol Cell Endocrinol. 2005, 245 (1–2): 138-146.
Article
CAS
PubMed
Google Scholar
Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA: Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol. 2002, 29 (1): 41-60. 10.1677/jme.0.0290041.
Article
CAS
PubMed
Google Scholar
Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C: Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem. 2002, 277 (39): 36570-36576. 10.1074/jbc.M204751200.
Article
CAS
PubMed
Google Scholar
Wu Y, Kawate H, Ohnaka K, Nawata H, Takayanagi R: Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol Cell Biol. 2006, 26 (17): 6633-6655. 10.1128/MCB.01534-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S: Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol. 2005, 19 (2): 350-361.
Article
CAS
PubMed
Google Scholar
Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG: The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 1999, 19 (12): 8383-8392.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW: Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979, 17 (1): 16-23.
CAS
PubMed
Google Scholar
Jensen FC, Girardi AJ, Gilden RV, Koprowski H: Infection of Human and Simian Tissue Cultures with Rous Sarcoma Virus. Proc Natl Acad Sci USA. 1964, 52: 53-59. 10.1073/pnas.52.1.53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubino D, Driggers P, Arbit D, Kemp L, Miller B, Coso O, Pagliai K, Gray K, Gutkind S, Segars J: Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action. Oncogene. 1998, 16 (19): 2513-2526. 10.1038/sj.onc.1201783.
Article
CAS
PubMed
Google Scholar
Butler LM, Centenera MM, Neufing PJ, Buchanan G, Choong CS, Ricciardelli C, Saint K, Lee M, Ochnik A, Yang M: Suppression of androgen receptor signaling in prostate cancer cells by an inhibitory receptor variant. Mol Endocrinol. 2006, 20 (5): 1009-1024. 10.1210/me.2004-0401.
Article
CAS
PubMed
Google Scholar
Irvine RA, Ma H, Yu MC, Ross RK, Stallcup MR, Coetzee GA: Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet. 2000, 9 (2): 267-274. 10.1093/hmg/9.2.267.
Article
CAS
PubMed
Google Scholar
Buchanan G, Yang M, Harris JM, Nahm HS, Han G, Moore N, Bentel JM, Matusik RJ, Horsfall DJ, Marshall VR: Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol. 2001, 15 (1): 46-56. 10.1210/me.15.1.46.
Article
CAS
PubMed
Google Scholar
Gordon GW, Berry G, Liang XH, Levine B, Herman B: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J. 1998, 74 (5): 2702-2713. 10.1016/S0006-3495(98)77976-7.
Article
PubMed Central
CAS
PubMed
Google Scholar