WHO: Cancer fact sheet No 297; 2012.
Oberstein P, Kenneth P. Pancreatic cancer: why is it so hard to treat? Ther Adv Gastroenterol. 2013;6:321–7.
Article
Google Scholar
Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunett A, Simone G, Nardulli P, Santini D, Aieta M, Delcuratolo S, Silvestris N. Carcinogenesis of pancreatic adenocarcinoma: precursor lesion. Int J Mol Sci. 2013;14:19731–62.
Article
PubMed
Google Scholar
Huang ZQ, Buchsbaum DJ. Monoclonal antibodies in the treatment of pancreatic cancer. Immunotherapy. 2009;1:223–9.
Article
CAS
PubMed
Google Scholar
Tanaka S. Molecular pathogenesis and targeted therapy of pancreatic Cancer. Ann Surg Oncol. 2016;2:197–205.
Article
Google Scholar
Schneider G, Hamacher R, Eser S, Friess H, Schmid RM, Saur D. Molecular biology of pancreatic cancer new aspects and targets. Anticancer Res. 2008;28:1541–50.
CAS
Google Scholar
Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.
CAS
Google Scholar
Sakorafas GH, Tsiotou AG, Tsiotou GG. Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat Rev. 2000;26:29–52.
Article
CAS
Google Scholar
Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.
Article
CAS
Google Scholar
König A, Fernandez-Zapico ME, Ellenrieder V. Primers on molecular pathways--the NFAT transcription pathway in pancreatic cancer. Pancreatology. 2010;10:416–22.
Article
PubMed
Google Scholar
Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM, Ellenrieder V. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/ calcineurin signaling pathway. EMBO J. 2006;25:3714–24.
Article
CAS
PubMed
Google Scholar
Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A, Rau B, Radlwimmer B, Dohner H, Lichter P, Gress TM, Bentz M. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res. 2004;64:4428–33.
Article
CAS
Google Scholar
Malsy M, Graf B, Almstedt K. Interaction between NFATc2 and the transcription factor Sp1 in pancreatic carcinoma cells PaTu 8988t. BMC Mol Biol. 2017;18:20.
Article
PubMed
Google Scholar
Suske G. The Sp-family of transcription factors. Gene. 1999;238:291–300.
Article
CAS
PubMed
Google Scholar
Santini MP, Talora C, Seki T, Bolgan L, Dotto GP. Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation. Proceedings of the National Academy of Science USA. 2001;98:9575–80.
Article
CAS
Google Scholar
Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14:185–91.
Article
CAS
PubMed
Google Scholar
Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005;16:35–53.
Article
CAS
PubMed
Google Scholar
Mocellin S, Nitti D. TNF and cancer: the two sides of the coin. Frontiers in bioscience: a journal and virtual. library. 2008;13:2774–83.
CAS
Google Scholar
Bertazza L, Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010;17:3337–52.
Article
CAS
PubMed
Google Scholar
Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J, Adam D, Wajant H, Kalthoff H, Trauzold A. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;68:1443–50.
Article
CAS
Google Scholar
Kaminuma O, Kitamura F, Kitamura N, Hiroi T, Miyoshi H, Miyawaki A, Miyatake S. Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. J Immunol. 2008;(1):319–26.
Finkel MP, Reilly CA, Biskis BO. Pathogenesis of radiation and virus-induced bone tumors. Recent Results Cancer Res. 1976;54:92–103.
Google Scholar
Milde-Langosch K. The Fos family of transcription factors and their role in tumourgenesis. Eur J Cancer. 2005;41:2449–61.
Article
CAS
Google Scholar
Sunters A, McCluskey J, Grigoriadis AE. Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation. Developmental genetics. 1998;22:386–97.
Article
CAS
Google Scholar
Wakita K, Ohyanagi H, Yamamoto K, Tokuhisa T, Saitoh Y. Overexpression of c-Ki-ras and c- fos in human pancreatic carcinomas. Int J Pancreatol. 1992;11:43–7.
CAS
Google Scholar
Lee CS, Charalambous D. Immunohistochemical localization of the c-fos oncoprotein in pancreatic cancers. Zentralbl Pathol. 1994;140:271–5.
CAS
Google Scholar
Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM. C-Fos is required for malignant progression of skin tumours. Cell. 1995;82:721–32.
Article
CAS
Google Scholar
Wu MY, Zhuang CX, Yang HX, Liang YR. Expression of Egr-1, c-Fos, and cyclin D1 in esophageal cancer and its precursors: an immunohistochemical and in situ hybridisation study. World J Gastroenterol. 2004;10:476–80.
Article
CAS
PubMed
Google Scholar
Hynes RO. Integrins: bidirectional allosteric signaling machines. Cell. 2002;110:673–87.
Article
CAS
Google Scholar
Langsenlehner U, Renner W, Yazdani-Biuki B, Eder T, Wascher TC, Paulweber B, Clar H, Hofmann G, Samonigg H, Krippl P. Integrin alpha-2 and beta-3 gene polymorphisms and breast cancer risk. Breast Cancer Res Treat. 2006;97:67–72.
Article
CAS
Google Scholar
Arcangeli A, Crociani O, Bencini L. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130101.
Article
Google Scholar
Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002;4:540–4.
Article
CAS
Google Scholar
Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol. 2003;4:1–8.
Article
Google Scholar
Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 2011;21:91–103.
Article
CAS
Google Scholar
Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer. 2009;9:810–20.
Article
CAS
PubMed
Google Scholar
Abdelrahim M, Baker CH, Abbruzzese JL, Safe S. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst. 2006;98:855–68.
Article
CAS
Google Scholar
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer. FEBS J. 2015;282:224–58.
Article
CAS
PubMed
Google Scholar
Jia Z, Gao Y, Wand L, Li Q, Zhang J, Le X, Wie D, Yao J, Chang DZ, Huang S, Keping X. Treatment with combination of Mithramycin a and Tolfenamic acid promotes degradation of Sp1 protein and synergistic antitumor activity in pancreatic cancer. Cancer Res. 2010;70:1111–9.
Article
CAS
PubMed
Google Scholar
Novak K. Conference report -- protein kinase inhibitors in cancer treatment: mixing and matching? Highlights of the keystone symposium on protein kinases and cancer; February 24-29, 2004; Lake Tahoe, California. MedGenMed. 2004;6:25.
PubMed Central
PubMed
Google Scholar
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of Cellular Physiology. 2001;188:143–60.
Article
CAS
Google Scholar
Narayan VA, Kriwacki RW, Caradonna JP. Structure of zinc fingers domains from transcription factor Sp1. Insights into sequence-specific protein-DNA recognition. J Biol Chem. 1997;272:7801–9.
Article
CAS
Google Scholar
Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J. 2005;392:1–11.
Article
CAS
PubMed
Google Scholar
Jackson SP, Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988;55:125–33.
Article
CAS
Google Scholar
Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R. GC box binding induces phophorylation of Sp1 by a DNA-dependent protein kinase. Cell. 1990;63:155–65.
Article
CAS
Google Scholar
Lee JA, Suh DC, Kang JE, Kim MH, Park H, Lee MN, Kim JM, Jeon BN, Roh HE, Yu MY, Choi KY, Kim KY, Hur M. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK. J Biol Chem. 2005;280:28061–71.
Article
CAS
Google Scholar
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat. 2010;192:275–83.
Article
CAS
Google Scholar
Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer. 2005;41:2438–48.
Article
CAS
Google Scholar
Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol. 2002;195:27–38.
Article
CAS
Google Scholar
Kwon HS, Kim MS, Edenberg HJ, Hur MW. Sp3 and Sp4 can repress transcription by competing with Sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem. 1999;274:20–8.
Article
CAS
Google Scholar