Fassler JS, West AH. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Euk Cell. 2013;12(8):1052–60.
Article
CAS
Google Scholar
Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215.
Article
CAS
PubMed
Google Scholar
Saito H. Histidine phosphorylation and two-component signaling in eukaryotic cells. Chem Rev. 2001;101:2497–509.
Article
CAS
PubMed
Google Scholar
D'Agostino IB, Kieber JJ. Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem Sci. 1999;24(Nov.):452–6.
Article
CAS
PubMed
Google Scholar
Tsuzuki M, Ishige K, Mizuno T. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol Microbiol. 1995;18:953–62.
Article
CAS
PubMed
Google Scholar
Bilwes AM, Alex LA, Crane BR, Simon MI. Structure of CheA, a signal-transducing histidine kinase. Cell. 1999;96(Jan. 8):131–41.
Article
CAS
PubMed
Google Scholar
Freeman JA, Bassler BL. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol. 1999;181(3):899–906.
CAS
PubMed
PubMed Central
Google Scholar
Calera JA, Herman D, Calderone R. Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast. 2000;16:1053–9.
Article
CAS
PubMed
Google Scholar
Lee JW, Ko YJ, Kim SY, Bahn YS. Multiple roles of Ypd1 phosphotransfer protein in viability, stress response, and virulence factor regulation in Cryptococcus neoformans. Euk Cell. 2011;10(7):998–1002.
Article
CAS
Google Scholar
Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett. 1998;437:11–4.
Article
CAS
PubMed
Google Scholar
Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996;86:865–75.
Article
CAS
PubMed
Google Scholar
Tamás MJ, Rep M, Thevelein JM, Hohmann S. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 2000;472:159–65.
Article
PubMed
Google Scholar
Bhate MP, Molnar KS, Goulian M, DeGrado WF. Signal transduction in histidine kinases: insights from new structures. Structure. 2015;23(6):981–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diensthuber RP, Bommer M, Gleichmann T, Möglich A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure. 2013;21(July 2):1127–36.
Article
CAS
PubMed
Google Scholar
Gao R, Stock AM. Biological insights from structures of two-component proteins. Annu Rev Microbiol. 2009;63:133–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996;86:845–8.
Article
CAS
PubMed
Google Scholar
Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192(Oct.):289–318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levin DE. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2005;69(2):262–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fassler J, West AH. Genetic and biochemical analysis of the SLN1 pathway in Saccharomyces cerevisiae. Meth Enzymol. 2010;471:291–317.
Article
CAS
Google Scholar
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66(2):300–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Posas F, Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998;17(5):1385–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Ault A, Malone CL, Raitt D, Dean S, Johnston LH, et al. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 1998;17(23):6952–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 2011;40(D1):D700–D5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fassler JS, West AH. Fungal Skn7 stress responses and their relationship to virulence. Euk Cell. 2011;10(2):156–67.
Article
CAS
Google Scholar
Li S, Dean S, Li Z, Horecka J, Deschenes RJ, Fassler JS. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell. 2002;13(Feb.):412–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu JM-Y, Deschenes RJ, Fassler JS. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Euk Cell. 2003;2(6):1304–14.
Article
CAS
Google Scholar
Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994;369:242–5.
Article
CAS
PubMed
Google Scholar
Kaserer AO, Andi B, Cook PF, West AH. Kinetic measurements for studying phosphorelay signaling. Meth Enzymol. 2010;471:291–317.
Article
CAS
Google Scholar
Tamás MJ, Luyten K, Sutherland FCW, Hernandez A, Albertyn J, Valadi H, et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol. 1999;31(4):1087–104.
Article
PubMed
Google Scholar
Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, et al. Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genet. 2008;40(11):1300–6.
Article
CAS
PubMed
Google Scholar
Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994;14(6):4135–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ota IM, Varshavsky A. A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant. Proc Natl Acad Sci U S A. 1992;89:2355–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porter SW, West AH. A common docking site for response regulators on the yeast phosphorelay protein YPD1. Biochim Biophys Acta. 2005;1748:138–45.
Article
CAS
PubMed
Google Scholar
Porter SW, Xu Q, West AH. Ssk1p response regulator binding surface on histidine-containing phosphotransfer protein Ypd1p. Euk Cell. 2003;2(1):27–33.
Article
CAS
Google Scholar
Xu Q, West AH. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J Mol Biol. 1999;292:1039–50.
Article
CAS
PubMed
Google Scholar
Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci. 2006;14:202–8.
Article
CAS
Google Scholar
Kato M, Mizuno T, Shimizu T, Hakoshima T. Refined structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor kinase ArcB from Escherichia coli at 1.57 Å resolution. Acta Cryst. 1999;D55:1842–9.
CAS
Google Scholar
Ulrich DL, Kojetin D, Bassler BL, Cavanagh J, Loria JP. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. J Mol Biol. 2005;347:297–307.
Article
CAS
PubMed
Google Scholar
Ruszkowski M, Brzezinski K, Jedrzejczak R, Dauter M, Dauter Z, Sikorski M, et al. Medicago truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into the cytokinin transduction pathway in plants. FEBS J. 2013;280:3709–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogov VV, Bernhard F, Lohr F, Dotsch V. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. J Mol Biol. 2004;343:1035–48.
Article
CAS
PubMed
Google Scholar
Xu Q, Carlton D, Miller MD, Elsliger M-A, Krishna SS, Abdubek P, et al. The crystal structureof a histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter cresentus. J Mol Biol. 2009;390:686–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T. Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol Plant. 2012;6(3):959–70.
Article
PubMed
CAS
Google Scholar
Xu Q, Nguyen V, West AH. Purification, crystallization, and preliminary X-ray diffraction analysis of the yeast phosphorelay protein YPD1. Acta Cryst. 1999;D55:291–3.
CAS
Google Scholar
Zhao X, Copeland DM, Soares AS, West AH. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol. 2008;375(4):1141–51.
Article
CAS
PubMed
Google Scholar
Janiak-Spens F, West AH. Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Mol Microbiol. 2000;37(1):136–44.
Article
CAS
PubMed
Google Scholar
Janiak-Spens F, Cook PF, West AH. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005;44(1):377–86.
Article
CAS
PubMed
Google Scholar
Matsushika A, Mizuno T. The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor. J Biochem. 1998;124:440–5.
Article
CAS
PubMed
Google Scholar
Nakamura A, Kakimoto T, Imamura A, Suzuki T, Ueguchi C, Mizuno T. Biochemical characterization of a putative cytokinin-responsive his-kinase, CKI1, from Arabidopsis thaliana. Biosci Biotechnol Biochem. 1999;63(9):1627–30.
Article
CAS
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):279–85.
Article
CAS
Google Scholar
Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, et al. Interaction dynamics determine signaling and output pathway responses. Cell Rep. 2017;19(April 4, 2017):136–49.
Article
CAS
PubMed
Google Scholar
Xu Q, Porter SW, West AH. The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component systems. Structure. 2003;11(Dec. 2003):1569–81.
Article
CAS
PubMed
Google Scholar
Biondi EG, Skerker JM, Arif M, Prasol MS, Perchuck BS, Laub MT. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter cresentus. Mol Microbiol. 2006;59(2):386–401.
Article
CAS
PubMed
Google Scholar
Bahn Y-S, Kojima K, Cox GM, Heitman J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell. 2006;17(July):3122–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu J-L, Chen H-C, Peng H-L, Chang H-Y. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem. 2008;283(15):9933–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavrianos J, Desai C, Chauhan N. Two-component histidine phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Euk Cell. 2014;13(4):452–60.
Article
CAS
Google Scholar
Schuster M, Silversmith RE, Bourret RB. Conformational coupling in the chemotaxis response regulator CheY. Proc Natl Acad Sci U S A. 2001;98(11):6003–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herschlag D, Jencks WP. The effects of Mg2+, hydrogen bonding, and steric factors on rate and equilibrium constants for phosphoryl transfer between carboxylate ions and pyridines. J Am Chem Soc. 1990;112(5):1942–50.
Article
CAS
Google Scholar
Stock J, Levit MN, Wolanin PM. Information processing in bacterial chemotaxis. Science's STKE. 2002;https://stke.sciencemag.org/content/2002/132/pe25.
Grebe TW, Stock JB. The histidine protein kinase superfamily. Adv Micro Physiol. 1999;41:139–227.
Article
CAS
Google Scholar
Kim D-J, Forst S. Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology. 2001;147:1197–212.
Article
CAS
PubMed
Google Scholar
Dutta R, Yoshida T, Inouye M. The critical role of the conserved Thr247 residue in the functioning of the osmosensor EnvZ, a histidine kinase/phosphatase, in Escherichia coli. J Biol Chem. 2000;275(49):38645–53.
Article
CAS
PubMed
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janiak-Spens F, Sparling JM, Gurfinkel M, West AH. Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J Bacteriol. 1999;181(2):411–7.
CAS
PubMed
PubMed Central
Google Scholar
Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.
Article
CAS
PubMed
Google Scholar
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Cryst. 2010;D66:213–21.
Google Scholar
McCoy AJ, Grosse-Kunstieve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung L-W, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 2008;64(1):61–9.
Article
CAS
PubMed
Google Scholar
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix. Refine. Acta Crystallogr D Biol Crystallogr. 2012;68(4):352–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 2004;D 60:2126–32.
Google Scholar
Rasband W, Image J. US national institutes of health. Maryland: Bethesda; 1997.
Google Scholar
Wolfram S. Wolfram research. Inc, Mathematica, Version. 2013;8:23.
Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–35.
Article
CAS
Google Scholar
Release S. 2: Maestro, version 9.8. Schrödinger, LLC, New York, NY. 2014.
Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, et al. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem. 2005;26(16):1752–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al., editors. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC 2006 Conference, Proceedings of the ACM/IEEE; 2006: IEEE.
DeLano WL. The PyMOL molecular graphics system. San Carlos: DeLano Scientific; 2002.
Google Scholar
Karplus PA, Diederichs K. Linking crystallographic model and data quality. Science. 2012;336(6084):1030–3.
Article
CAS
PubMed
PubMed Central
Google Scholar