Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol. 2003;185(7):2066–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canellakis ZN, Marsh L, Bondy P. Polyamines and their derivatives as modulators in growth and differentiation. Yale J Biol Med. 1989;62(5):481.
CAS
PubMed
PubMed Central
Google Scholar
Demady DR, Jianmongkol S, Vuletich JL, Bender AT, Osawa Y. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol Pharmacol. 2001;59(1):24–9.
CAS
PubMed
Google Scholar
Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA. Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006;188(7):2355–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wortham BW, Oliveira MA, Fetherston JD, Perry RD. Polyamines are required for the expression of key Hms proteins important for yersinia pestis biofilm formation. Environ Microbiol. 2010;12(7):2034–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams BJ, Du R-H, Calcutt MW, Abdolrasulnia R, Christman BW, Blackwell TS. Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa. Mol Microbiol. 2010;76(1):104–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon DH, Lu C-D. Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 2006;50(5):1615–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S. Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J Bacteriol. 2012;194(4):813–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68(1):4–16.
Article
CAS
PubMed
Google Scholar
Fernandez IM, Silva M, Schuch R, Walker WA, Siber AM, Maurelli AT, et al. Cadaverine prevents the escape of shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J Infect Dis. 2001;184(6):743–53.
Article
CAS
PubMed
Google Scholar
Maurelli AT, Fernández RE, Bloch CA, Rode CK, Fasano A. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci. 1998;95(7):3943–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao X, Li C, Zhang J, Lu CD. Gamma-glutamyl spermine synthetase PauA2 as a potential target of antibiotic development against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(10):5309–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parry L, Lopez-Ballester J, Wiest L, Pegg AE. Effect of expression of human spermidine/spermine N1-acetyltransferase in Escherichia coli. Biochemistry. 1995;34(8):2701–9.
Article
CAS
PubMed
Google Scholar
Chou HT, Kwon DH, Hegazy M, Lu CD. Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol. 2008;190(6):1966–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, et al. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem. 2005;280(6):4602–8.
Article
CAS
PubMed
Google Scholar
Lu C-D, Itoh Y, Nakada Y, Jiang Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol. 2002;184(14):3765–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Wang J, Zhang L-H. Modulation of bacterial Type III secretion system by a spermidine transporter dependent signaling pathway. PLoS One. 2007;2(12):e1291.
Article
PubMed
PubMed Central
Google Scholar
Wu D, Lim SC, Dong Y, Wu J, Tao F, Zhou L, et al. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from < i > Pseudomonas aeruginosa</i> J Mol Biol. 2012;416(5):697–712.
Article
CAS
PubMed
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959–64.
Article
CAS
PubMed
Google Scholar
Riester D, Wegener D, Hildmann C, Schwienhorst A. Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem Biophys Res Commun. 2004;324(3):1116–23.
Article
CAS
PubMed
Google Scholar
Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, et al. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem. 2009;284(15):9899–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39(Database issue):D596–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol. 2005;354(1):107–20.
Article
CAS
PubMed
Google Scholar
Lombardi PM, Angell HD, Whittington DA, Flynn EF, Rajashankar KR, Christianson DW. Structure of prokaryotic polyamine deacetylase reveals evolutionary functional relationships with eukaryotic histone deacetylases. Biochemistry. 2011;50(11):1808–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombardi PM, Cole KE, Dowling DP, Christianson DW. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol. 2011;21(6):735–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Zhang X, Wu YD, Wiest O. Inhibition and mechanism of HDAC8 revisited. J Am Chem Soc. 2014;136(33):11636–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007;27(2):197–213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo j. 2003;22(5):1168–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–7.
Article
CAS
PubMed
Google Scholar
Meyners C, Wawrzinek R, Kramer A, Hinz S, Wessig P, Meyer-Almes FJ. A fluorescence lifetime-based binding assay for acetylpolyamine amidohydrolases from Pseudomonas aeruginosa using a [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ligand probe. Anal Bioanal Chem. 2014;406(20):4889–97.
Article
CAS
PubMed
Google Scholar
Wolfson NA, Pitcairn CA, Sullivan ED, Joseph CG, Fierke CA. An enzyme-coupled assay measuring acetate production for profiling histone deacetylase specificity. Anal Biochem. 2014;456:61–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakurada K, Ohta T, Fujishiro K, Hasegawa M, Aisaka K. Acetylpolyamine amidohydrolase from Mycoplana ramosa: gene cloning and characterization of the metal-substituted enzyme. J Bacteriol. 1996;178(19):5781–6.
CAS
PubMed
PubMed Central
Google Scholar
Tashiro Y, Inagaki A, Ono K, Inaba T, Yawata Y, Uchiyama H, et al. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 2014;78(1):178–81.
Article
CAS
PubMed
Google Scholar
Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 2006;103(51):19484–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neidig A, Yeung AT, Rosay T, Tettmann B, Strempel N, Rueger M, et al. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol. 2013;13(1):77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garey KW, Vo QP, Lewis RE, Saengcharoen W, LaRocco MT, Tam VH. Increased bacterial adherence and biomass in Pseudomonas aeruginosa bacteria exposed to clarithromycin. Diagn Microbiol Infect Dis. 2009;63(1):81–6.
Article
CAS
PubMed
Google Scholar
Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother. 2004;48(4):1175–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–5.
Article
CAS
PubMed
Google Scholar
Nielsen TK, Hildmann C, Riester D, Wegener D, Schwienhorst A, Ficner R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2007;63(Pt 4):270–3.
Article
CAS
Google Scholar
Wegener D, Hildmann C, Riester D, Schober A, Meyer-almes F-J, Deubzer HE, et al. Identification of novel small-molecule histone deacetylase inhibitors by medium-throughput screening using a fluorigenic assay. Biochem J. 2008;413(1):143–50.
Article
CAS
PubMed
Google Scholar
Holt A, Palcic MM. A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nat Protocols. 2006;1(5):2498–505.
Article
CAS
PubMed
Google Scholar
Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006;103(8):2833–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overhage J, Bains M, Brazas MD, Hancock RE. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008;190(8):2671–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28(3):449–61.
Article
PubMed
Google Scholar
Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;1(1B):1.
PubMed
Google Scholar
Hildmann C, Ninkovic M, Dietrich R, Wegener D, Riester D, Zimmermann T, et al. A new amidohydrolase from Bordetella or Alcaligenes strain FB188 with similarities to histone deacetylases. J Bacteriol. 2004;186(8):2328–39.
Article
CAS
PubMed
PubMed Central
Google Scholar