Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676. 10.1016/j.cell.2006.07.024.
Article
PubMed
Google Scholar
Russo S, Tomatis D, Collo G, Tarone G, Tato F: Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: dissociation of terminal differentiation from myotube formation. J Cell Sci. 1998, 111 (Pt 6): 691-700.
PubMed
Google Scholar
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008, 455 (7213): 627-632. 10.1038/nature07314.
Article
PubMed
Google Scholar
Prabakaran S, Lippens G, Steen H, Gunawardena J: Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med. 2012, 4 (6): 565-583. 10.1002/wsbm.1185.
Article
PubMed
PubMed Central
Google Scholar
Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F: The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron. 1998, 20 (3): 483-494. 10.1016/S0896-6273(00)80989-7.
Article
PubMed
Google Scholar
Ma Q, Fode C, Guillemot F, Anderson DJ: Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 1999, 13 (13): 1717-1728. 10.1101/gad.13.13.1717.
Article
PubMed
PubMed Central
Google Scholar
Korzh V, Strahle U: Proneural, prosensory, antiglial: the many faces of neurogenins. Trends Neurosci. 2002, 25 (12): 603-605. 10.1016/S0166-2236(02)02275-0.
Article
PubMed
Google Scholar
Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME: Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell. 2001, 104 (3): 365-376. 10.1016/S0092-8674(01)00224-0.
Article
PubMed
Google Scholar
Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F: Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature. 2008, 455 (7209): 114-118. 10.1038/nature07198.
Article
PubMed
Google Scholar
Falk A, Holmstrom N, Carlen M, Cassidy R, Lundberg C, Frisen J: Gene delivery to adult neural stem cells. Exp Cell Res. 2002, 279 (1): 34-39. 10.1006/excr.2002.5569.
Article
PubMed
Google Scholar
Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Südhof TC: Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013, 78 (5): 785-798. 10.1016/j.neuron.2013.05.029.
Article
PubMed
PubMed Central
Google Scholar
Mattar P, Britz O, Johannes C, Nieto M, Ma L, Rebeyka A, Klenin N, Polleux F, Guillemot F, Schuurmans C: A screen for downstream effectors of Neurogenin2 in the embryonic neocortex. Dev Biol. 2004, 273 (2): 373-389. 10.1016/j.ydbio.2004.06.013.
Article
PubMed
Google Scholar
Koyano-Nakagawa N, Wettstein D, Kintner C: Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis. Mol Cell Neurosci. 1999, 14 (4-5): 327-339. 10.1006/mcne.1999.0783.
Article
PubMed
Google Scholar
Seo S, Richardson GA, Kroll KL: The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development. 2005, 132 (1): 105-115. 10.1242/dev.01548.
Article
PubMed
Google Scholar
Dyson HJ, Wright PE, Scheraga HA: The role of hydrophobic interactions in initiation and propagation of protein folding. Proc Natl Acad Sci U S A. 2006, 103 (35): 13057-13061. 10.1073/pnas.0605504103.
Article
PubMed
PubMed Central
Google Scholar
Dunker AK, Obradovic Z: The protein trinity-linking function and disorder. Nat Biotechnol. 2001, 19 (9): 805-806. 10.1038/nbt0901-805.
Article
PubMed
Google Scholar
Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Muller-Frohne M, Zirwer D, Czarnecki J, Damaschun G: Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry. 1995, 34 (40): 13211-13218. 10.1021/bi00040a037.
Article
PubMed
Google Scholar
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT: NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996, 35 (43): 13709-13715. 10.1021/bi961799n.
Article
PubMed
Google Scholar
Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK: Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol. 2002, 55 (1): 104-110. 10.1007/s00239-001-2309-6.
Article
PubMed
Google Scholar
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004, 337 (3): 635-645. 10.1016/j.jmb.2004.02.002.
Article
PubMed
Google Scholar
Dyson HJ, Wright PE: Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol. 2002, 12 (1): 54-60. 10.1016/S0959-440X(02)00289-0.
Article
PubMed
Google Scholar
Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z: Intrinsic disorder and protein function. Biochemistry. 2002, 41 (21): 6573-6582. 10.1021/bi012159+.
Article
PubMed
Google Scholar
Hager GL, McNally JG, Misteli T: Transcription dynamics. Mol Cell. 2009, 35 (6): 741-753. 10.1016/j.molcel.2009.09.005.
Article
PubMed
Google Scholar
Michel D: Fine tuning gene expression through short DNA-protein binding cycles. Biochimie. 2009, 91 (7): 933-941. 10.1016/j.biochi.2009.03.022.
Article
PubMed
Google Scholar
Gsponer J, Futschik ME, Teichmann SA, Babu MM: Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science. 2008, 322 (5906): 1365-1368. 10.1126/science.1163581.
Article
PubMed
PubMed Central
Google Scholar
Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK: The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004, 32 (3): 1037-1049. 10.1093/nar/gkh253.
Article
PubMed
PubMed Central
Google Scholar
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z: Intrinsically disordered protein. J Mol Graph Model. 2001, 19 (1): 26-59. 10.1016/S1093-3263(00)00138-8.
Article
PubMed
Google Scholar
Vosper JM, Fiore-Heriche CS, Horan I, Wilson K, Wise H, Philpott A: Regulation of neurogenin stability by ubiquitin-mediated proteolysis. Biochem J. 2007, 407 (2): 277-284. 10.1042/BJ20070064.
Article
PubMed
PubMed Central
Google Scholar
Wright PE, Dyson HJ: Linking folding and binding. Curr Opin Struct Biol. 2009, 19 (1): 31-38. 10.1016/j.sbi.2008.12.003.
Article
PubMed
PubMed Central
Google Scholar
Bertrand N, Castro DS, Guillemot F: Proneural genes and the specification of neural cell types. Nat Rev Neurosci. 2002, 3 (7): 517-530. 10.1038/nrn874.
Article
PubMed
Google Scholar
Longo A, Guanga GP, Rose RB: Crystal structure of E47-NeuroD1/beta2 bHLH domain-DNA complex: heterodimer selectivity and DNA recognition. Biochemistry. 2008, 47 (1): 218-229. 10.1021/bi701527r.
Article
PubMed
Google Scholar
Wendt H, Thomas RM, Ellenberger T: DNA-mediated folding and assembly of MyoD-E47 heterodimers. J Biol Chem. 1998, 273 (10): 5735-5743. 10.1074/jbc.273.10.5735.
Article
PubMed
Google Scholar
Aguado-Llera D, Goormaghtigh E, de Geest N, Quan XJ, Prieto A, Hassan BA, Gomez J, Neira JL: The basic helix-loop-helix region of human neurogenin 1 is a monomeric natively unfolded protein which forms a "fuzzy" complex upon DNA binding. Biochemistry. 2010, 49 (8): 1577-1589. 10.1021/bi901616z.
Article
PubMed
Google Scholar
Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbe JC, Lamb N, Fernandez A: cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol. 1999, 19 (4): 3167-3176.
Article
PubMed
PubMed Central
Google Scholar
Vosper JM, McDowell GS, Hindley CJ, Fiore-Heriche CS, Kucerova R, Horan I, Philpott A: Ubiquitylation on canonical and non-canonical sites targets the transcription factor neurogenin for ubiquitin-mediated proteolysis. J Biol Chem. 2009, 284 (23): 15458-15468. 10.1074/jbc.M809366200.
Article
PubMed
PubMed Central
Google Scholar
McDowell GS, Hardwick LJ, Philpott A: Complex domain interactions regulate stability and activity of closely related proneural transcription factors. Biochem Biophys Res Commun. 2014, 450 (4): 1283-1290. 10.1016/j.bbrc.2014.06.127.
Article
PubMed
PubMed Central
Google Scholar
McDowell GS, Kucerova R, Philpott A: Non-canonical ubiquitylation of the proneural protein Ngn2 occurs in both Xenopus embryos and mammalian cells. Biochem Biophys Res Commun. 2010, 400 (4): 655-660. 10.1016/j.bbrc.2010.08.122.
Article
PubMed
Google Scholar
Ali F, Hindley C, McDowell G, Deibler R, Jones A, Kirschner M, Guillemot F, Philpott A: Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development. 2011, 138 (19): 4267-4277. 10.1242/dev.067900.
Article
PubMed
PubMed Central
Google Scholar
Hindley C, Ali F, McDowell G, Cheng K, Jones A, Guillemot F, Philpott A: Post-translational modification of Ngn2 differentially affects transcription of distinct targets to regulate the balance between progenitor maintenance and differentiation. Development. 2012, 139 (10): 1718-1723. 10.1242/dev.077552.
Article
PubMed
PubMed Central
Google Scholar
Ma YC, Song MR, Park JP, Henry Ho HY, Hu L, Kurtev MV, Zieg J, Ma Q, Pfaff SL, Greenberg ME: Regulation of motor neuron specification by phosphorylation of neurogenin 2. Neuron. 2008, 58 (1): 65-77. 10.1016/j.neuron.2008.01.037.
Article
PubMed
PubMed Central
Google Scholar
Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL: Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development. 2000, 127 (4): 693-702.
PubMed
Google Scholar
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN: PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 2010, 1804 (4): 996-1010. 10.1016/j.bbapap.2010.01.011.
Article
PubMed
PubMed Central
Google Scholar
Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT: The DISOPRED server for the prediction of protein disorder. Bioinformatics. 2004, 20 (13): 2138-2139. 10.1093/bioinformatics/bth195.
Article
PubMed
Google Scholar
Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005, 21 (16): 3435-3438. 10.1093/bioinformatics/bti537.
Article
PubMed
Google Scholar
Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M: Protein NMR Spectroscopy: Principles and Practice. 2010, Elsevier Science, Waltham MA
Google Scholar
Marsh JA, Singh VK, Jia Z, Forman-Kay JD: Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci. 2006, 15 (12): 2795-2804. 10.1110/ps.062465306.
Article
PubMed
PubMed Central
Google Scholar
Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T, Lippens G: NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc. 2006, 128 (11): 3575-3583. 10.1021/ja054656+.
Article
PubMed
Google Scholar
Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P: Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR. 2012, 54 (3): 217-236. 10.1007/s10858-012-9674-x.
Article
PubMed
Google Scholar
Bienkiewicz EA, Lumb KJ: Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR. 1999, 15 (3): 203-206. 10.1023/A:1008375029746.
Article
PubMed
Google Scholar
Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD: 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995, 6 (2): 135-140. 10.1007/BF00211777.
PubMed
Google Scholar
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010, 463 (7284): 1035-1041. 10.1038/nature08797.
Article
PubMed
PubMed Central
Google Scholar
Tao H, Liu W, Simmons BN, Harris HK, Cox TC, Massiah MA: Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques. 2010, 48 (1): 61-64. 10.2144/000113304.
Article
PubMed
Google Scholar
Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM: A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell. 2007, 128 (3): 519-531. 10.1016/j.cell.2006.12.032.
Article
PubMed
PubMed Central
Google Scholar
Kaelin WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA, Livingston DM, Flemington EK: Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992, 70 (2): 351-364. 10.1016/0092-8674(92)90108-O.
Article
PubMed
Google Scholar
Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY
Google Scholar
Nieuwkoop PD, Faber J: Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. 1994, Garland Publishing, Incorporated, New York NY
Google Scholar
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003, 31 (13): 3497-3500. 10.1093/nar/gkg500.
Article
PubMed
PubMed Central
Google Scholar
Brown NR, Noble ME, Endicott JA, Johnson LN: The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999, 1 (7): 438-443. 10.1038/15674.
Article
PubMed
Google Scholar
Amniai L, Barbier P, Sillen A, Wieruszeski JM, Peyrot V, Lippens G, Landrieu I: Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 2009, 23 (4): 1146-1152. 10.1096/fj.08-121590.
Article
PubMed
Google Scholar