Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C: The growing burden of tuberculosis. Arch Intern Med. 2003, 163: 1009-1021. 10.1001/archinte.163.9.1009.
Article
PubMed
Google Scholar
Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC: Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999, 282: 677-686. 10.1001/jama.282.7.677.
Article
CAS
PubMed
Google Scholar
World Health Organization: Global tuberculosis control: surveillance, planning, financing. WHO Report. 2006, Geneva, Switzerland
Google Scholar
Basso LA, Blanchard JS: Resistance to antitubercular drugs. Adv Exp Med Biol. 1998, 456: 115-144.
Article
CAS
PubMed
Google Scholar
Dooley SW, Castro KG, Hutton MD, Mullan RJ, Polder JA, Snider DE: Guidelines for preventing the transmission of tuberculosis in health care settings, with special focus on HIV-related issues Rep. Morb Mortal Wkly Rep. 1990, 39: 1-29.
Google Scholar
Plabos-Méndez A, Gowda DK, Frieden TR: Controlling multidrug-resistant tuberculosis and access to expensive drugs: a rational framework. Bulletin of the World Health Organization. 2002, 80: 489-500.
Google Scholar
CDC (Centers for Disease Control and Prevention): Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide. Morb Mortal Wkly Rep. 2006, 55: 301-305.
Google Scholar
Coates A, Hu Y, Bax R, Page C: The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2002, 1: 895-910. 10.1038/nrd940.
Article
CAS
PubMed
Google Scholar
Bentley R: The shikimate pathway – a metabolic tree with many branches. Crit Rev Biochem Mol Biol. 1990, 25: 307-384. 10.3109/10409239009090615.
Article
CAS
PubMed
Google Scholar
Herrmann KM: The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell. 1995, 7: 907-919. 10.1105/tpc.7.7.907.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ratledge C: Nutrition, growth and metabolism. The biology of the Mycobacteria. Edited by: Ratledge C, Stanford JL. 1982, Academic Press, London, 185-271.
Google Scholar
Parish T, Stoker NG: The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology. 2002, 148: 3069-3077.
Article
CAS
PubMed
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. 10.1038/31159.
Article
CAS
PubMed
Google Scholar
Hawkes TR, Lewis T, Coggins JR, Mousdale DM, Lowe DJ, Thorneley RNF: Chorismate synthase: pre-steady-state kinetics of phosphate release from 5-enolpyruvylshikimate 3-phosphate. Biochem J. 1990, 265: 899-902.
Article
PubMed Central
CAS
PubMed
Google Scholar
Balasubramanian S, Abell C, Coggins JR: Observation of an isotope effect in the chorismate synthase reaction. J Am Chem Soc. 1990, 112: 8581-8583. 10.1021/ja00179a052.
Article
CAS
Google Scholar
White PJ, Millar G, Coggins JR: The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J. 1988, 251: 313-322.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dias MVB, Ely F, Palma MS, De Azevedo WF, Basso LA, Santos DS: Chorismate Synthase: An attractive target for drug development against orphan diseases. Curr Drug Targets. 2007, 8: 437-444. 10.2174/138945007780058924.
Article
CAS
PubMed
Google Scholar
Dias MVB, Borges JC, Ely F, Pereira JH, Canduri F, Ramos CH, Frazzon J, Palma MS, Basso LA, Santos DS, de Azevedo WF: Structure of chorismate synthase from Mycobacterium tuberculosis. J Struct Biol. 2006, 154: 130-143. 10.1016/j.jsb.2005.12.008.
Article
CAS
PubMed
Google Scholar
Grossman TH, Kawaski ES, Punreddy SR, Osburne MS: Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene. 1998, 209: 95-103. 10.1016/S0378-1119(98)00020-1.
Article
CAS
PubMed
Google Scholar
Rizzi C, Frazzon J, Ely F, Weber PG, Fonseca IO, Gallas M, Oliveira JS, Mendes MA, Souza BM, Palma MS, Santos DS, Basso LA: DAHP synthase from Mycobacterium tuberculosis H37Rv: cloning, expression, and purification of functional enzyme. Protein Expr Purif. 2005, 40: 23-30. 10.1016/j.pep.2004.06.040.
Article
CAS
PubMed
Google Scholar
Kitzing K, Macheroux P, Amrhein N: Spectroscopic and kinetic characterization of the bifunctional chorismate synthase from Neurospora crassa. J Biol Chem. 2001, 276: 42658-42666. 10.1074/jbc.M107249200.
Article
CAS
PubMed
Google Scholar
Ahn HJ, Yoon HJ, II Lee B, Suh SW: Crystal structure of chorismate synthase: A novel FMN-binding protein fold and functional insights. J Mol Biol. 2004, 336: 903-915. 10.1016/j.jmb.2003.12.072.
Article
CAS
PubMed
Google Scholar
Maclean J, Ali S: The structure of chorismate synthase reveals a novel flavin binding site fundamental to a unique chemical reaction. Structure. 2003, 11: 1499-1511. 10.1016/j.str.2003.11.005.
Article
CAS
PubMed
Google Scholar
Kitzing K, Auweter S, Amerhein N, Macheroux P: Mechanism of chorismate synthase. J Bio Chem. 2004, 279: 9451-9461. 10.1074/jbc.M312471200.
Article
CAS
Google Scholar
Inouye S: NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCC is a flavoprotein. FEBS Lett. 7744, 347: 163-168. 10.1016/0014-5793(94)00528-1.
Article
Google Scholar
Macheroux P, Petersen J, Bornemann S, Lowe DJ, Thorneley RNF: Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry. 1996, 35: 1643-1652. 10.1021/bi951705u.
Article
CAS
PubMed
Google Scholar
Henstrand JM, Schaller A, Braun M, Amrhein N, Schmid J: Saccharomyces cerevisiae chorismate synthase has a flavin reductase activity. Mol Microbiol. 1996, 22: 859-866. 10.1046/j.1365-2958.1996.01534.x.
Article
CAS
PubMed
Google Scholar
Matsubara T, Ohshiro T, Nishina Y, Izumi Y: Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol. 2001, 67: 1179-1184. 10.1128/AEM.67.3.1179-1184.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zenno S, Kobori T, Tanokura M, Saigo K: Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable of interacting with the bacterial luciferase. Biosci Biotechnol Biochem. 1998, 62: 1978-1987. 10.1271/bbb.62.1978.
Article
CAS
PubMed
Google Scholar
Broco M, Soares CM, Oliveira S, Mayhew SG, Rodrigues-Pousada C: Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin. FEBS Letters. 2007, 581: 4397-4402. 10.1016/j.febslet.2007.08.009.
Article
CAS
PubMed
Google Scholar
Northrop DB: Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry. 1975, 14: 2644-2651. 10.1021/bi00683a013.
Article
CAS
PubMed
Google Scholar
Schowen KB, RL Schowen: The use of isotope effects to elucidate enzyme mechanisms. BioScience. 1981, 31: 826-831. 10.2307/1308680.
Article
CAS
Google Scholar
Cook PF: Kinetic and Regulatory Mechanisms of Enzymes from Isotope Effects. Enzyme Mechanism from Isotope Effects. Edited by: Cook PF. 1991, CRC Press, Florida, 203-228.
Google Scholar
Cook PF, Cleland WW: Mechanistic deductions from isotope effects in multireactant enzyme mechanisms. Biochemistry. 1981, 20: 1790-1796. 10.1021/bi00510a013.
Article
CAS
PubMed
Google Scholar
Quinn DM, Sutton LD: Theoretical Basis and Mechanistic Utility of Solvent Isotope Effects. Enzyme Mechanism from Isotope Effects. Edited by: Cook PF. 1991, CRC Press, Florida, 73-126.
Google Scholar
Patel MP, Liu WS, West J, Tew D, Meek DT, Thrall SH: Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae β-ketoacyl-ACP reductase. Biochemistry. 2004, 44: 16753-16765. 10.1021/bi050947j.
Article
Google Scholar
Belasco JG, Albery J, Knowles JR: Double isotope fractionation: test for concertedness and for transition-state dominance. J Am Chem Soc. 1983, 105: 2475-2477. 10.1021/ja00346a062.
Article
CAS
Google Scholar
Hermes JD, Roeske CA, O'Leary MH, Cleland WW: Use of multiple isotope effects to determine enzyme mechanisms and intrinsic isotope effects. Biochemistry. 1984, 21: 5106-5114. 10.1021/bi00263a040.
Article
Google Scholar
Rauch G, Ehammer H, Bornemann S, Macheroux P: Mutagenic analysis of an invariant aspartate residue in chorismate synthase supports its role as an active site base. Biochemistry. 2007, 46: 3768-3774. 10.1021/bi602420u.
Article
CAS
PubMed
Google Scholar
Ehammer H, Rauch G, Prem A, Kappes B, Macheroux P: Conservation of NADPH utilization by chorismate synthase and its implications for the evolution of the shikimate pathway. Mol Micribiol. 2007, 65: 1249-1257. 10.1111/j.1365-2958.2007.05861.x.
Article
CAS
Google Scholar
Fernandes CL, Breda A, Santos DS, Basso LA, Souza ON: A structural model for chorismate synthase from Mycobacterium tuberculosis in complex with coenzyme and substrate. Comput Biol Med. 2007, 25: 434-441.
Google Scholar
Vincentelli R, Bignon C, Gruez A, Canaan S, Sulzenbacher G, Tegoni M, Campanacci V, Cambillau C: Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res. 2003, 36: 165-172. 10.1021/ar010130s.
Article
CAS
PubMed
Google Scholar
Chapman T: Pure but not simple. Nature. 2005, 434: 795-798. 10.1038/434795a.
Article
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.
Article
CAS
PubMed
Google Scholar
Bradford MM, McRorie RA, Williams WL: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
PubMed
Google Scholar
Chassaigne H, Lobinski R: Characterization of horse kidney metallothionein isoforms by electrospray MS and reversed-phase HPLC-electrospray MS. Analyst. 1998, 123: 2125-2130. 10.1039/a804713h.
Article
CAS
PubMed
Google Scholar
Oliveira JS, Pinto CA, Basso LA, Santos DS: Cloning and overexpression in soluble form of functional shikimate kinase and 5-enolpyruvylshikimate 3-phosphate synthase enzymes from Mycobacterium tuberculosis. Protein Expr Purif. 2001, 22: 430-435. 10.1006/prep.2001.1457.
Article
CAS
PubMed
Google Scholar
Oliveira JS, Mendes MA, Palma MS, Basso LA, Santos DS: One-step purification of 5-enolpyruvylshikimate-3-phosphate synthase enzyme from Mycobacterium tuberculosis. Protein Expr Purif. 2003, 28: 287-292. 10.1016/S1046-5928(02)00708-8.
Article
CAS
PubMed
Google Scholar
Upson RH, Haugland RP, Malekzadeh MN, Haugland RP: A spectrophotometric method to measure enzymatic activity in reactions that generate inorganic pyrophosphate. Anal Biochem. 1996, 243: 41-45. 10.1006/abio.1996.0479.
Article
CAS
PubMed
Google Scholar
Webb MR: A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci USA. 1992, 89: 4884-4887. 10.1073/pnas.89.11.4884.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ottolina G, Riva S, Carrea G, Danieli B, Buckmann AF: Enzymatic synthesis of [4R-2H]NAD(P)H and [4S-2H]NAD(P)H and determination of the stereospecificity of 7 alpha- and 12 alpha-hydroxysteroid dehydrogenase. Biochem Biophys Acta. 1989, 998: 173-178.
CAS
PubMed
Google Scholar
Orr GA, Blanchard JS: High-performance ion-exchange separation of oxidized and reduced nicotinamide adenine dinucleotides. Anal Biochem. 1984, 142: 232-234. 10.1016/0003-2697(84)90544-X.
Article
CAS
PubMed
Google Scholar