Van Damme P, Maurer-Stroh S, Plasman K, Van Durme J, Colaert N, Timmerman E, De Bock PJ, Goethals M, Rousseau F, Schymkowitz J, Vandekerckhove J, Gevaert K: Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs. Mol Cell Proteomics. 2009, 8 (2): 258-272.
Article
PubMed
CAS
Google Scholar
Cullen SP, Adrain C, Luthi AU, Duriez PJ, Martin SJ: Human and murine granzyme B exhibit divergent substrate preferences. J Cell Biol. 2007, 176 (4): 435-444. 10.1083/jcb.200612025.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, Thompson PE, Trapani JA, Bird PI: The major human and mouse granzymes are structurally and functionally divergent. J Cell Biol. 2006, 175 (4): 619-630. 10.1083/jcb.200606073.
Article
PubMed
CAS
PubMed Central
Google Scholar
Casciola-Rosen L, Garcia-Calvo M, Bull HG, Becker JW, Hines T, Thornberry NA, Rosen A: Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J Biol Chem. 2007, 282 (7): 4545-4552. 10.1074/jbc.M606564200.
Article
PubMed
CAS
Google Scholar
Plasman K, Maurer-Stroh S, Gevaert K, Van Damme P: Holistic view on the extended substrate specificities of orthologous granzymes. J Proteome Res. 2014, 13 (4): 1785-1793. 10.1021/pr401104b.
Article
PubMed
CAS
Google Scholar
Schechter I, Berger A: On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967, 27 (2): 157-162. 10.1016/S0006-291X(67)80055-X.
Article
PubMed
CAS
Google Scholar
Agard NJ, Mahrus S, Trinidad JC, Lynn A, Burlingame AL, Wells JA: Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc Natl Acad Sci U S A. 2012, 109 (6): 1913-1918. 10.1073/pnas.1117158109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Plasman K, Van Damme P, Kaiserman D, Impens F, Demeyer K, Helsens K, Goethals M, Bird PI, Vandekerckhove J, Gevaert K: Probing the efficiency of proteolytic events by positional proteomics. Mol Cell Proteomics. 2011, 10 (2): M110 003301-10.1074/mcp.M110.003301.
Article
PubMed
PubMed Central
Google Scholar
Schlage P, Egli FE, Nanni P, Wang LW, Kizhakkedathu JN, Apte SS, auf dem Keller U: Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics. 2014, 13 (2): 580-593. 10.1074/mcp.M113.035139.
Article
PubMed
CAS
PubMed Central
Google Scholar
Trapani JA, Sutton VR: Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol. 2003, 15 (5): 533-543. 10.1016/S0952-7915(03)00107-9.
Article
PubMed
CAS
Google Scholar
Scott GB, Bowles PA, Wilson EB, Meade JL, Low BC, Davison A, Blair GE, Cook GP: Identification of the BCL2/adenovirus E1B-19 K protein-interacting protein 2 (BNIP-2) as a granzyme B target during human natural killer cell-mediated killing. Biochem J. 2010, 431 (3): 423-431.
Article
PubMed
CAS
Google Scholar
Waterhouse NJ, Sedelies KA, Browne KA, Wowk ME, Newbold A, Sutton VR, Clarke CJ, Oliaro J, Lindemann RK, Bird PI, Johnstone RW, Trapani JA: A central role for Bid in granzyme B-induced apoptosis. J Biol Chem. 2005, 280 (6): 4476-4482. 10.1074/jbc.M410985200.
Article
PubMed
CAS
Google Scholar
Waterhouse NJ, Sedelies KA, Trapani JA: Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol. 2006, 84 (1): 72-78. 10.1111/j.1440-1711.2005.01416.x.
Article
PubMed
CAS
Google Scholar
Thomas DA, Scorrano L, Putcha GV, Korsmeyer SJ, Ley TJ: Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK. Proc Natl Acad Sci U S A. 2001, 98 (26): 14985-14990. 10.1073/pnas.261581498.
Article
PubMed
CAS
PubMed Central
Google Scholar
Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, Shostak I, Roberts DL, Hunter AM, Korneluk R, Bleackley RC: Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity. 2003, 18 (3): 355-365. 10.1016/S1074-7613(03)00032-3.
Article
PubMed
CAS
Google Scholar
Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G: Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell. 1994, 79 (2): 341-351. 10.1016/0092-8674(94)90202-X.
Article
PubMed
CAS
Google Scholar
Zhou YT, Guy GR, Low BC: BNIP-2 induces cell elongation and membrane protrusions by interacting with Cdc42 via a unique Cdc42-binding motif within its BNIP-2 and Cdc42GAP homology domain. Exp Cell Res. 2005, 303 (2): 263-274. 10.1016/j.yexcr.2004.08.044.
Article
PubMed
CAS
Google Scholar
Kang JS, Bae GU, Yi MJ, Yang YJ, Oh JE, Takaesu G, Zhou YT, Low BC, Krauss RS: A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation. J Cell Biol. 2008, 182 (3): 497-507. 10.1083/jcb.200801119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pan CQ, Low BC: Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett. 2012, 586 (17): 2674-2691. 10.1016/j.febslet.2012.04.023.
Article
PubMed
CAS
Google Scholar
Belcredito S, Vegeto E, Brusadelli A, Ghisletti S, Mussi P, Ciana P, Maggi A: Estrogen neuroprotection: the involvement of the Bcl-2 binding protein BNIP2. Brain Res Brain Res Rev. 2001, 37 (1–3): 335-342.
Article
PubMed
CAS
Google Scholar
Valencia CA, Cotten SW, Liu R: Cleavage of BNIP-2 and BNIP-XL by caspases. Biochem Biophys Res Commun. 2007, 364 (3): 495-501. 10.1016/j.bbrc.2007.10.018.
Article
PubMed
CAS
Google Scholar
Ju W, Valencia CA, Pang H, Ke Y, Gao W, Dong B, Liu R: Proteome-wide identification of family member-specific natural substrate repertoire of caspases. Proc Natl Acad Sci U S A. 2007, 104 (36): 14294-14299. 10.1073/pnas.0702251104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sall A, Zhang HM, Qiu D, Liu Z, Yuan J, Lim T, Ye X, Marchant D, McManus B, Yang D: Pro-apoptotic activity of mBNIP-21 depends on its BNIP-2 and Cdc42GAP homology (BCH) domain and is enhanced by coxsackievirus B3 infection. Cell Microbiol. 2010, 12 (5): 599-614. 10.1111/j.1462-5822.2009.01416.x.
Article
PubMed
CAS
Google Scholar
Zhang HM, Yanagawa B, Cheung P, Luo H, Yuan J, Chau D, Wang A, Bohunek L, Wilson JE, McManus BM, Yang D: Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ Res. 2002, 90 (12): 1251-1258. 10.1161/01.RES.0000024690.69379.5C.
Article
PubMed
CAS
Google Scholar
Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J, Gevaert K: Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat Protoc. 2011, 6 (8): 1130-1141. 10.1038/nprot.2011.355.
Article
PubMed
CAS
Google Scholar
Ghesquiere B, Van Damme J, Martens L, Vandekerckhove J, Gevaert K: Proteome-wide characterization of N-glycosylation events by diagonal chromatography. J Proteome Res. 2006, 5 (9): 2438-2447. 10.1021/pr060186m.
Article
PubMed
CAS
Google Scholar
Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J, Gevaert K: Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics. 2008, 8 (7): 1362-1370. 10.1002/pmic.200700950.
Article
PubMed
CAS
Google Scholar
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013, 41 (Database issue): D1063-D1069.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zapata JM, Takahashi R, Salvesen GS, Reed JC: Granzyme release and caspase activation in activated human T-lymphocytes. J Biol Chem. 1998, 273 (12): 6916-6920. 10.1074/jbc.273.12.6916.
Article
PubMed
CAS
Google Scholar
Demon D, Van Damme P, Vanden Berghe T, Deceuninck A, Van Durme J, Verspurten J, Helsens K, Impens F, Wejda M, Schymkowitz J, Rousseau F, Madder A, Vandekerckhove J, Declercq W, Gevaert K, Vandenabeele P: Proteome-wide substrate analysis indicates substrate exclusion as a mechanism to generate caspase-7 versus caspase-3 specificity. Mol Cell Proteomics. 2009, 8 (12): 2700-2714. 10.1074/mcp.M900310-MCP200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ingolia NT, Lareau LF, Weissman JS: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011, 147 (4): 789-802. 10.1016/j.cell.2011.10.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee S, Liu B, Huang SX, Shen B, Qian SB: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A. 2012, 109 (37): E2424-E2432. 10.1073/pnas.1207846109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002, 1 (5): 376-386. 10.1074/mcp.M200025-MCP200.
Article
PubMed
CAS
Google Scholar
Menschaert G, Van Criekinge W, Notelaers T, Koch A, Crappe J, Gevaert K, Van Damme P: Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and Near-cognate Translation Initiation Events. Mol Cell Proteomics. 2013, 12 (7): 1780-1790. 10.1074/mcp.M113.027540.
Article
PubMed
CAS
PubMed Central
Google Scholar
Low BC, Lim YP, Lim J, Wong ES, Guy GR: Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42. J Biol Chem. 1999, 274 (46): 33123-33130. 10.1074/jbc.274.46.33123.
Article
PubMed
CAS
Google Scholar
Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J: BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis. Biochem Biophys Res Commun. 2003, 308 (2): 379-385. 10.1016/S0006-291X(03)01387-1.
Article
PubMed
CAS
Google Scholar
Dosztanyi Z, Csizmok V, Tompa P, Simon I: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics. 2005, 21 (16): 3433-3434. 10.1093/bioinformatics/bti541.
Article
PubMed
CAS
Google Scholar
Wootton JC, Federhen S: Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 1996, 266: 554-571.
Article
PubMed
CAS
Google Scholar
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004, 337 (3): 635-645. 10.1016/j.jmb.2004.02.002.
Article
PubMed
CAS
Google Scholar
Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G: Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999, 96 (5): 615-624. 10.1016/S0092-8674(00)80572-3.
Article
PubMed
CAS
Google Scholar
Van Damme P, Gawron D, Van Criekinge W, Menschaert G: N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics. 2014, 13: 1245-1261. 10.1074/mcp.M113.036442.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barrett LW, Fletcher S, Wilton SD: Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012, 69 (21): 3613-3634. 10.1007/s00018-012-0990-9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Renshaw SA, Dempsey CE, Barnes FA, Bagstaff SM, Dower SK, Bingle CD, Whyte MK: Three novel Bid proteins generated by alternative splicing of the human Bid gene. J Biol Chem. 2004, 279 (4): 2846-2855.
Article
PubMed
CAS
Google Scholar