Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Ocfemia MC, Su J, Xu F, Weinstock H: Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis. 2013, 40 (3): 187-193. 10.1097/OLQ.0b013e318286bb53.
Article
PubMed
Google Scholar
Petrin D, Delgaty K, Bhatt R, Garber G: Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998, 11 (2): 300-317.
PubMed
CAS
PubMed Central
Google Scholar
Workowski KA, Berman SM: Centers for Disease Control and Prevention Sexually Transmitted Disease Treatment Guidelines. Clin Infect Dis. 2011, 53 (Suppl 3): S59-S63. 10.1093/cid/cir694.
Article
PubMed
Google Scholar
McClelland RS: Trichomonas vaginalis infection: can we afford to do nothing?. J Infect Dis. 2008, 197 (4): 487-489. 10.1086/526498.
Article
PubMed
PubMed Central
Google Scholar
Cotch MF, JG, 2nd P, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG: Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis. 1997, 24 (6): 353-360. 10.1097/00007435-199707000-00008.
Article
PubMed
CAS
Google Scholar
Muller M: Biochemistry of Trichomonas vaginalis. Trichomonads Parasitic in Humans. Edited by: Honigberg BM. 1989, New York: Springer, 53-83.
Google Scholar
Diamond LS: The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957, 43 (4): 488-490.
Article
PubMed
CAS
Google Scholar
Clark CG, Diamond LS: Methods for cultivation of luminal parasitic protists of clinical importance. Clin Microbiol Rev. 2002, 15 (3): 329-341. 10.1128/CMR.15.3.329-341.2002.
Article
PubMed
PubMed Central
Google Scholar
Thong KW, Coombs GH, Sanderson BE: L-methionine catabolism in trichomonads. Mol Biochem Parasitol. 1987, 23 (3): 223-231. 10.1016/0166-6851(87)90029-6.
Article
PubMed
CAS
Google Scholar
Zuo X, Lockwood BC, Coombs GH: Uptake of amino acids by the parasitic, flagellated protist Trichomonas vaginalis. Microbiology. 1995, 141 (Pt 10): 2637-2642.
Article
PubMed
CAS
Google Scholar
Trussell RE, Johnson G: Physiology of pure cultures of Trichomonas vaginalis: III. Fermentation of carbohydrates and related compounds. Proc Soc Exp Biol Med. 1941, 47: 176-178. 10.3181/00379727-47-13076.
Article
CAS
Google Scholar
Read CP: Comparative studies on the physiology of Trichomonad Protozoa. J Parasitol. 1957, 43 (4): 385-394. 10.2307/3274661.
Article
PubMed
CAS
Google Scholar
ter Kuile BH: Carbohydrate metabolism and physiology of the parasitic protist Trichomonas vaginalis studied in chemostats. Microbiology. 1994, 140 (Pt 9): 2495-2502.
Article
PubMed
CAS
Google Scholar
ter Kuile BH, Muller M: Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitology. 1995, 110 (Pt 1): 37-44.
Article
PubMed
CAS
Google Scholar
Ter Kuile BH, Hrdy I, Sanchez LB, Muller M: Purification and specificity of two alpha-glucosidase isoforms of the parasitic protist Trichomonas vaginalis. J Eukaryot Microbiol. 2000, 47 (5): 440-442. 10.1111/j.1550-7408.2000.tb00072.x.
Article
PubMed
CAS
Google Scholar
Adler S: The presence of amylase in the karyoplasm of Trichomonas vaginalis. Acta Med Orient. 1953, 12: 204-205.
PubMed
CAS
Google Scholar
Takayanagi T, Enriquez GL, Kambara H: An electrophoretic study of the amylase of Trichomonas vaginalis. Southeast Asian J Trop Med Public Health. 1971, 2: 308-312.
PubMed
CAS
Google Scholar
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M: Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007, 315 (5809): 207-212. 10.1126/science.1132894.
Article
PubMed
PubMed Central
Google Scholar
TrichDB Trichomonas Genomics Resource. [http://trichdb.org/trichdb/]
Schomburg D, Salzmann M: β-fructofuranosidase. Enzyme Handbook 4. Edited by: Schomburg D, Salzmann M. 1991, Berlin Heidelberg: Springer, 179-188.
Chapter
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Morrison HG, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ, Sullivan S, Treatman C, Wang H: GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 2009, 37 (Database issue): D526-D530.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hollander DH: Colonial morphology of Trichomonas vaginalis in Agar. J Parasitol. 1976, 62 (5): 826-828. 10.2307/3278971.
Article
PubMed
CAS
Google Scholar
Nielsen TJ, Pradhan P, Brittingham A, Wilson WA: Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax. J Eukaryot Microbiol. 2012, 59 (4): 359-366. 10.1111/j.1550-7408.2012.00624.x.
Article
PubMed
CAS
Google Scholar
Goldstein A, Lampen JO: β-D-fructofuranoside fructohydrolase from yeast. Methods in Enzymology. Edited by: Wood WA. 1975, Volume 76: 504-511.
Article
Google Scholar
Hardy TA, Huang D, Roach PJ: Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem. 1994, 269 (45): 27907-27913.
PubMed
CAS
Google Scholar
Wenrich DH: The species of trichomonas in man. J Parasitol. 1947, 33: 177-178. 10.2307/3273547.
Article
PubMed
CAS
Google Scholar
Honigberg BM: Evolutionary and systematic relationships in the flagellate order Trichomonadida. J Protozool. 1963, 10: 20-63. 10.1111/j.1550-7408.1963.tb01635.x.
Article
PubMed
CAS
Google Scholar
Honigberg BM: Taxonomy and Nomenclature. Trichomonads Parasitic In Humans. Edited by: Honigberg BM. 1989, New York: Springer-Verlag, 3-4.
Google Scholar
Solomon JM: Studies on the physiology of Trichomonas hominis. J Parasitol. 1957, 43 (5 (Supplement)): 39-
Google Scholar
Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D: BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013, 41 (D1): D764-D772. 10.1093/nar/gks1049.
Article
PubMed
CAS
PubMed Central
Google Scholar
BRENDA - the enzyme database. [http://www.brenda-enzymes.org]
Gascón S, Neumann NP, Lampen JO: Comparative study of the properties of the purified internal and external invertases from yeast. J Biol Chem. 1968, 243 (7): 1573-1577.
PubMed
Google Scholar
Leturque A, Brot-Laroche E, Le Gall M: Carbohydrate intake. Prog Mol Biol Transl Sci. 2012, 108: 113-127.
Article
PubMed
CAS
Google Scholar
Hauser H, Semenza G: Sucrase-isomaltase: a stalked intrinsic protein of the brush border membrane. CRC Crit Rev Biochem. 1983, 14 (4): 319-345. 10.3109/10409238309102798.
Article
PubMed
CAS
Google Scholar
Slee AM, Tanzer JM: Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449. Infect Immun. 1979, 24 (3): 821-828.
PubMed
CAS
PubMed Central
Google Scholar
Schmid K, Schupfner M, Schmitt R: Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol. 1982, 151 (1): 68-76.
PubMed
CAS
PubMed Central
Google Scholar
Titgemeyer F, Jahreis K, Ebner R, Lengeler JW: Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase. Mol Gen Genet. 1996, 250 (2): 197-206.
PubMed
CAS
Google Scholar
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, Stulke J: Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology. 1999, 145 (Pt 12): 3419-3429.
Article
PubMed
CAS
Google Scholar
Kuhn C, Grof CP: Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010, 13 (3): 288-298.
Article
PubMed
Google Scholar
Wahl R, Wippel K, Goos S, Kamper J, Sauer N: A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol. 2010, 8 (2): e1000303-10.1371/journal.pbio.1000303.
Article
PubMed
PubMed Central
Google Scholar
Meyer H, Vitavska O, Wieczorek H: Identification of an animal sucrose transporter. J Cell Sci. 2011, 124 (Pt 12): 1984-1991.
Article
PubMed
CAS
Google Scholar
Huggins GR, Preti G: Vaginal odors and secretions. Clin Obstet Gynecol. 1981, 24 (2): 355-377. 10.1097/00003081-198106000-00005.
Article
PubMed
CAS
Google Scholar
Rae DO, Crews JE:
Tritrichomonas foetus
. Vet Clin North Am Food Anim Pract. 2006, 22 (3): 595-611. 10.1016/j.cvfa.2006.07.001.
Article
PubMed
Google Scholar
Tolbert MK, Gookin J: Tritrichomonas foetus: a new agent of feline diarrhea. Compend Contin Educ Vet. 2009, 31 (8): 374-381. 390; quiz 381
PubMed
Google Scholar
Ryley JF: Studies on the metabolism of the protozoa. 5. Metabolism of the parasitic flagellate Trichomonas foetus. Biochem J. 1955, 59 (3): 361-369.
Article
PubMed
CAS
PubMed Central
Google Scholar
Theodorides VJ: Axenic culture of Tetratrichomonas gallinarum: Growth and anaerobic utilization of carbohydrates and related compounds. Exp Parasitol. 1964, 15 (5): 397-402. 10.1016/0014-4894(64)90034-7.
Article
PubMed
CAS
Google Scholar