Yoshida T, Andoh K, Kosaka H, Kumagai S, Matsunaga I, Akasaka S, et al. Inhalation toxicokinetics of p-dichlorobenzene and daily absorption and internal accumulation in chronic low-level exposure to humans. Arch Toxicol. 2002;76:306–15.
Article
CAS
PubMed
Google Scholar
Bristol DW, Crist HL, Lewis RG, MacLeod KE, Sovocool GW. Chemical analysis of human blood for assessment of environmental exposure to semivolatile organochlorine chemical contaminants. J Anal Toxicol. 1982;6:269–75.
Article
CAS
PubMed
Google Scholar
Kumagai S, Matsunaga I. Identification of urinary metabolites of human subjects exposed to o-dichlorobenzene. Int Arch Occup Environ Health. 1995;67:207–9.
CAS
PubMed
Google Scholar
Jan J. Chlorobenzene residues in human fat and milk. Bull Environ Contam Toxicol. 1983;30:595–9.
Article
CAS
PubMed
Google Scholar
Mes J, Davies DJ, Turton D, Sun WF. Levels and trends of chlorinated hydrocarbon contaminants in the breast milk of Canadian women. Food Addit Contam. 1986;3:313–22.
Article
CAS
PubMed
Google Scholar
Hsiao PK, Lin YC, Shih TS, Chiung YM. Effects of occupational exposure to 1,4-dichlorobenzene on hematologic, kidney, and liver functions. Int Arch Occup Environ Health. 2009;82:1077–85.
Article
CAS
PubMed
Google Scholar
Hissink AM, Van Ommen B, Van Bladeren PJ. Dose-dependent kinetics and metabolism of 1,2-dichlorobenzene in rat: effect of pretreatment with phenobarbital. Xenobiotica. 1996;26:89–105.
Article
CAS
PubMed
Google Scholar
Yan RM, Chiung YM, Pan CY, Liu JH, Liu PS. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells. Toxicology. 2008;253:28–35.
Article
CAS
PubMed
Google Scholar
MacLennan DH, Green NM. Structural biology. Pumping ions. Nat. 2000;405:633–4.
Article
CAS
Google Scholar
Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem. 1993;268:2809–15.
CAS
PubMed
Google Scholar
MacLennan DH, Klip A. Calcium transport and release by sarcoplasmic reticulum: a mini-review. Soc Gen Physiol Ser. 1979;33:61–75.
CAS
PubMed
Google Scholar
MacLennan DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970;245:4508–18.
CAS
PubMed
Google Scholar
Barata H, de Meis L. Uncoupled ATP hydrolysis and thermogenic activity of the sarcoplasmic reticulum Ca2 + −ATPase: coupling effects of dimethyl sulfoxide and low temperature. J Biol Chem. 2002;277:16868–72.
Article
CAS
PubMed
Google Scholar
Martonosi A, Feretos R. Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake. J Biol Chem. 1964;239:659–68.
CAS
PubMed
Google Scholar
Inesi G, Tadini-Buoninsegni F. Ca/H exchange, lumenal Ca release and Ca/ATP coupling ratios in the sarcoplasmic reticulum ATPase. J Cell Commun Signal. 2014;8:5–11.
Article
PubMed
PubMed Central
Google Scholar
de Meis L, Vianna AL. Energy interconversion by the Ca2 + −dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–92.
Article
PubMed
Google Scholar
de Meis L. Approaches to studying the mechanisms of ATP synthesis in sarcoplasmic reticulum. Methods Enzymol. 1988;157:190–206.
Article
PubMed
Google Scholar
Henao F, Delavoie F, Lacapere JJ, McIntosh DB, Champeil P. Phosphorylated Ca2 + −ATPase stable enough for structural studies. J Biol Chem. 2001;276:24284–5.
Article
CAS
PubMed
Google Scholar
Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000;405:647–55.
Article
CAS
PubMed
Google Scholar
Sorensen TL, Clausen JD, Jensen AM, Vilsen B, Moller JV, Andersen JP, et al. Localization of a K + − binding site involved in dephosphorylation of the sarcoplasmic reticulum Ca2 + − ATPase. J Biol Chem. 2004;279:46355–8.
Article
CAS
PubMed
Google Scholar
Sorensen TL, Moller JV, Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science. 2004;304:1672–5.
Article
CAS
PubMed
Google Scholar
Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, Inesi G. Crystal structures of the calcium pump and sarcolipin in the Mg2 + −bound E1 state. Nature. 2013;495:260–4.
Article
CAS
PubMed
Google Scholar
Inesi G. Mechanism of calcium transport. Annu Rev Physiol. 1985;47:573–601.
Article
CAS
PubMed
Google Scholar
Michelangeli F, East JM. A diversity of SERCA Ca2+ inhibitors. Biochem Soc Trans. 2011;39:789–97.
Article
CAS
PubMed
Google Scholar
Plenge-Tellechea F, Soler F, Fernandez-Belda F. On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum Ca2 + −ATPases by cyclopiazonic acid. J Biol Chem. 1997;272:2794–800.
Article
CAS
PubMed
Google Scholar
Soler F, Plenge-Tellechea F, Fortea I, Fernandez-Belda F. Cyclopiazonic acid effect on Ca2 + −dependent conformational states of the sarcoplasmic reticulum ATPase. Implication for the enzyme turnover. Biochemistry. 1998;37:4266–74.
Article
CAS
PubMed
Google Scholar
Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci. 1990;87:2466–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aureliano M, Tiago T, Gândara RM, Sousa A, Moderno A, Kaliva M, Salifoglou A, Duarte RO, Moura JJ. Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump. J Inorg Biochem. 2005;99:2355–61.
Article
CAS
PubMed
Google Scholar
Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJ, Baruah B, Crans DC. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. Inorg Chem. 2008;47:5677–84.
Article
CAS
PubMed
Google Scholar
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem. 2012;107:82–9.
Article
CAS
PubMed
Google Scholar
Aureliano M, Fraqueza G, Ohlin CA. Ion pumps as biological targets for decavanadate. Dalton Trans. 2013;42:11770–7.
Article
CAS
PubMed
Google Scholar
Antipenko AY, Spielman AI, Kirchberger MA. Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2 + −ATPase. J Pharmacol Exp Ther. 1999;290:227–34.
CAS
PubMed
Google Scholar
Namekata I, Hamaguchi S, Wakasugi Y, Ohhara M, Hirota Y, Tanaka H. Ellagic acid and gingerol, activators of the sarco-endoplasmic reticulum Ca2+-ATPase, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Eur J Pharmacol. 2013;706:48–55.
Article
CAS
PubMed
Google Scholar
Christensen SB, Skytte DM, Denmeade SR, Dionne C, Møller JV, Nissen P, Isaacs JT. A Trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells. Anticancer Agents Med Chem. 2009;9:276–94.
Article
CAS
PubMed
Google Scholar
Ogunbayo OA, Harris RM, Waring RH, Kirk CJ, Michelangeli F. Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2 + −ATPase by flavonoids: a quantitative structure-activity relationship study. IUBMB Life. 2008;60:853–8.
Article
CAS
PubMed
Google Scholar
Salama G, Scarpa A. Enhanced Ca2+ uptake and ATPase activity of sarcoplasmic reticulum in the presence of diethyl ether. J Biol Chem. 1980;255:6525–8.
CAS
PubMed
Google Scholar
Almeida LM, Vaz WL, Stumpel J, Madeira VM. Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes. Biochemistry. 1986;25:4832–9.
Article
CAS
PubMed
Google Scholar
Bigelow DJ, Thomas DD. Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. J Biol Chem. 1987;262:13449–56.
CAS
PubMed
Google Scholar
Michelangeli F, Orlowski S, Champeil P, East JM, Lee AG. Mechanism of inhibition of the (Ca2(+)-Mg2+)-ATPase by nonylphenol. Biochemistry. 1990;29:3091–101.
Article
CAS
PubMed
Google Scholar
Ishida Y, Honda H. Inhibitory action of 4-aminopyridine on Ca(2+)-ATPase of the mammalian sarcoplasmic reticulum. J Biol Chem. 1993;268:4021–4.
CAS
PubMed
Google Scholar
Carfagna MA, Muhoberac BB. Interaction of tricyclic drug analogs with synaptic plasma membranes: structure-mechanism relationships in inhibition of neuronal Na+/K(+)-ATPase activity. Mol Pharmacol. 1993;44:129–41.
CAS
PubMed
Google Scholar
Eletr S, Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972;282:174–9.
Article
CAS
PubMed
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
CAS
PubMed
Google Scholar
Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417.
Article
CAS
PubMed
Google Scholar
Schwarzenbach G, Senn H, Komplexone AG, XXIX. Ein grosser Chelateffekt besonderer Art. Helv Chim Acta. 1957;40:1886–900.
Article
CAS
Google Scholar
Blinks JR, Wier WG, Hess P, Prendergast FG. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40:1–114.
Article
CAS
PubMed
Google Scholar
Lin TI, Morales MF. Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase system. Anal Biochem. 1977;77:10–7.
Article
CAS
PubMed
Google Scholar
Martonosi A, Feretos R. Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments. J Biol Chem. 1964;239:648–58.
CAS
PubMed
Google Scholar
Petretski JH, Wolosker H, de Meis L. Activation of Ca2+ uptake and inhibition of reversal of the sarcoplasmic reticulum Ca2+ pump by aromatic compounds. J Biol Chem. 1989;264:20339–43.
CAS
PubMed
Google Scholar
Wakabayashi S, Ogurusu T, Shigekawa M. Mechanism for 3,3′,4′,5-tetrachlorosalicylanilide-induced activation of sarcoplasmic reticulum ATPase. J Biol Chem. 1988;263:15304–12.
CAS
PubMed
Google Scholar
Martinez-Azorin F, Teruel JA, Fernandez-Belda F, Gomez-Fernandez JC. Effect of diethylstilbestrol and related compounds on the Ca(2+)-transporting ATPase of sarcoplasmic reticulum. J Biol Chem. 1992;267:11923–9.
CAS
PubMed
Google Scholar
Khan YM, Wictome M, East JM, Lee AG. Interactions of dihydroxybenzenes with the Ca(2+)-ATPase: separate binding sites for dihydroxybenzenes and sesquiterpene lactones. Biochemistry. 1995;34:14385–93.
Article
CAS
PubMed
Google Scholar
Soler F, Plenge-Tellechea F, Fortea I, Fernandez-Belda F. Clomipramine and related structures as inhibitors of the skeletal sarcoplasmic reticulum Ca2+ pump. J Bioenerg Biomembr. 2000;32:133–42.
Article
CAS
PubMed
Google Scholar
Logan-Smith MJ, Lockyer PJ, East JM, Lee AG. Curcumin, a molecule that inhibits the Ca2 + −ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem. 2001;276:46905–11.
Article
CAS
PubMed
Google Scholar
Bhalla P, Agrawal D. Alterations in rat erythrocyte membrane due to hexachlorocyclohexane (technical) exposure. Hum Exp Toxicol. 1998;17:638–42.
Article
CAS
PubMed
Google Scholar
Hara H, Kanazawa T. Selective inhibition by ionophore A23187 of the enzyme isomerization in the catalytic cycle of sarcoplasmic reticulum Ca2 + −ATPase. J Biol Chem. 1986;261:16584–90.
CAS
PubMed
Google Scholar
Peter HW, Wolf HU. Kinetics of (Na +, K +)-ATPase of human erythrocyte membranes. I. Activation by Na + and K +. Biochim Biophys Acta. 1972;290:300–9.
Article
CAS
PubMed
Google Scholar
De Meis L, Tuena de Gomez Puyou M, Gomez Puyou A. Inhibition of mitochondrial F1 ATPase and sarcoplasmic reticulum ATPase by hydrophobic molecules. Eur J Biochem. 1988;171:343–9.
Article
PubMed
Google Scholar
Lax A, Soler F, Fernandez-Belda F. Inhibition of sarcoplasmic reticulum Ca2 + −ATPase by miconazole. Am J Physiol Cell Physiol. 2002;283:C85–92.
Article
CAS
PubMed
Google Scholar
de Meis L, Hasselbach W, Machado RD. Characterization of calcium oxalate and calcium phosphate deposits in sarcoplasmic reticulum vesicles. J Cell Biol. 1974;62:505–9.
Article
PubMed
PubMed Central
Google Scholar
Ohmiya H, Kanazawa T. Inhibition by A23187 of conformational changes involved in the Ca(2+)-induced activation of sarcoplasmic reticulum Ca(2+)-ATPase. J Biochem. 1991;109:751–7.
CAS
PubMed
Google Scholar
Hara H, Ohmiya H, Kanazawa T. Selective inhibition by ionophore A23187 of the enzyme isomerization in the catalytic cycle of Na+, K + − ATPase. J Biol Chem. 1988;263:3183–7.
CAS
PubMed
Google Scholar
Wictome M, Michelangeli F, Lee AG, East JM. The inhibitors thapsigargin and 2,5-di(tert-butyl)-1,4-benzohydroquinone favour the E2 form of the Ca2+, Mg2 + −ATPase. FEBS Lett. 1992;304:109–13.
Article
CAS
PubMed
Google Scholar
Hua S, Xu C, Ma H, Inesi G. Interference with phosphoenzyme isomerization and inhibition of the sarco-endoplasmic reticulum Ca2+ ATPase by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene. J Biol Chem. 2005;280:17579–83.
Article
CAS
PubMed
Google Scholar
Berman M, Karlish S. Interaction of an aromatic dibromoisothiouronium derivate with the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Biochemistry. 2003;42:3356–66.
Article
Google Scholar
Smith WS, Broadbridge R, East JM, Lee AG. Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2 + −ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem J. 2002;361:277–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reis M, Farage M, de Souza AC, de Meis L. Correlation between uncoupled ATP hydrolysis and heat production by the sarcoplasmic reticulum Ca2 + −ATPase: coupling effect of fluoride. J Biol Chem. 2001;276:42793–800.
Article
CAS
PubMed
Google Scholar
Wakabayashi S, Ogurusu T, Shigekawa M. Factors influencing calcium release from the ADP-sensitive phosphoenxyme intermediate of the sarcoplasmic reticulum ATPase. J Biol Chem. 1986;264:9762–9.
Google Scholar
Masuda H, de Meis L. Effect of temperature on the Ca2+ transport ATPase of sarcoplasmic reticulum. J Biol Chem. 1977;252:8567–71.
CAS
PubMed
Google Scholar
Andersen JP, Jørgensen PL, Møller JV. Direct demonstration of structural changes in soluble, monomeric Ca2 + −ATPase associated with Ca2+ release during the transport cycle. Proc Natl Acad Sci. 1985;82:4573–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Froehlich JP, Heller PF. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Biochemistry. 1985;24:126–36.
Article
CAS
PubMed
Google Scholar
Covarrubias-Cervantes M, Champion D, Debeaufort F, Voilley A. Translational diffusion coefficients of volatile compounds in various aqueous solutions at low and subzero temperatures. J Agric Food Chem. 2005;53:6671–6.
Article
Google Scholar