Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ: Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997, 90: 859-869. 10.1016/S0092-8674(00)80351-7.
Article
PubMed
Google Scholar
Caunt CJ, Keyse SM: Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J. 2013, 280: 489-504. 10.1111/j.1742-4658.2012.08716.x.
Article
PubMed
PubMed Central
Google Scholar
Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, North PE, Ramchandran R: Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood. 2009, 113: 1184-1191. 10.1182/blood-2008-06-162180.
Article
PubMed
PubMed Central
Google Scholar
Caunt CJ, Armstrong SP, Rivers CA, Norman MR, McArdle CA: Spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem. 2008, 283: 26612-26623. 10.1074/jbc.M801500200.
Article
PubMed
PubMed Central
Google Scholar
Mandl M, Slack DN, Keyse SM: Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol. 2005, 25: 1830-1845. 10.1128/MCB.25.5.1830-1845.2005.
Article
PubMed
PubMed Central
Google Scholar
Jeong DG, Cho YH, Yoon TS, Kim JH, Ryu SE, Kim SJ: Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins. 2007, 66: 253-258. 10.1002/prot.21224.
Article
PubMed
Google Scholar
North PE, Waner M, Buckmiller L, James CA, Mihm MC: Vascular tumors of infancy and childhood: beyond capillary hemangioma. Cardiovasc Pathol. 2006, 15: 303-317. 10.1016/j.carpath.2006.03.001.
Article
PubMed
Google Scholar
Boon LM, Ballieux F, Vikkula M: Pathogenesis of vascular anomalies.
Clin Plast Surg 2011, 38:7–19.,
Lobley A, Whitmore L, Wallace BA: DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics. 2002, 18: 211-212. 10.1093/bioinformatics/18.1.211.
Article
PubMed
Google Scholar
Andrade MA, Chacon P, Merelo JJ, Moran F: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. 1993, 6: 383-390. 10.1093/protein/6.4.383.
Article
PubMed
Google Scholar
Lubben T, Clampit J, Stashko M, Trevillyan J, Jirousek MR: In vitro enzymatic assays of protein tyrosine phosphatase 1B.
Current Protocol Pharmacology/editorial board, SJ Enna 2001. Chapter 3:Unit3 8.,
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K: Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Protein Struct Funct Bioinformatics. 2009, 77 (Suppl 9): 114-122. 10.1002/prot.22570.
Article
Google Scholar
Krieger E, Koraimann G, Vriend G: Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Protein Struct Funct Bioinformatics. 2002, 47: 393-402. 10.1002/prot.10104.
Article
Google Scholar
Sohn J, Parks JM, Buhrman G, Brown P, Kristjansdottir K, Safi A, Edelsbrunner H, Yang W, Rudolph J: Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate. Biochemistry. 2005, 44: 16563-16573. 10.1021/bi0516879.
Article
PubMed
Google Scholar
Buhrman G, Parker B, Sohn J, Rudolph J, Mattos C: Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond. Biochemistry. 2005, 44: 5307-5316. 10.1021/bi047449f.
Article
PubMed
Google Scholar
Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM: Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell. 2001, 7: 387-399. 10.1016/S1097-2765(01)00186-1.
Article
PubMed
Google Scholar
Farooq A, Zhou MM: Structure and regulation of MAPK phosphatases. Cell Signal. 2004, 16: 769-779. 10.1016/j.cellsig.2003.12.008.
Article
PubMed
Google Scholar
Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, MacDonell C, Lin G, Lu P, Wishart DS: PROSESS: a protein structure evaluation suite and server. Nucleic Acids Res. 2010, 38: W633-W640. 10.1093/nar/gkq375.
Article
PubMed
PubMed Central
Google Scholar
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003, 24: 1999-2012. 10.1002/jcc.10349.
Article
PubMed
Google Scholar
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG: A smooth particle mesh Ewald method. J Chem Phys. 1995, 103: 8577-8593. 10.1063/1.470117.
Article
Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983, 79: 926-935. 10.1063/1.445869.
Article
Google Scholar
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G: Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Protein Struct Funct Bioinformatics. 2004, 57: 678-683. 10.1002/prot.20251.
Article
Google Scholar
Mark JK, Aubin RA, Smith S, Hefford MA: Inhibition of mitogen-activated protein kinase phosphatase 3 activity by interdomain binding. J Biol Chem. 2008, 283: 28574-28583. 10.1074/jbc.M801747200.
Article
PubMed
PubMed Central
Google Scholar
Aronov AM, Baker C, Bemis GW, Cao J, Chen G, Ford PJ, Germann UA, Green J, Hale MR, Jacobs M, Janetka JW, Maltais F, Martinez-Botella G, Namchuk MN, Straub J, Tang Q, Xie X: Flipped Out: Structure-Guided Design of Selective Pyrazolylpyrrole ERK Inhibitors‡. J Med Chem. 2007, 50: 1280-1287. 10.1021/jm061381f.
Article
PubMed
Google Scholar
Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z: ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics. 2014, 30: 1771-1773. 10.1093/bioinformatics/btu097.
Article
PubMed
PubMed Central
Google Scholar
Roskoski R: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 2012, 66: 105-143. 10.1016/j.phrs.2012.04.005.
Article
PubMed
Google Scholar
Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B: Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 2003, 12: 1313-1322. 10.1110/ps.0243403.
Article
PubMed
PubMed Central
Google Scholar
Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM: Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal. 2009, 21: 1794-1805. 10.1016/j.cellsig.2009.07.015.
Article
PubMed
Google Scholar
Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM: Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure. 2003, 11: 155-164. 10.1016/S0969-2126(02)00943-7.
Article
PubMed
Google Scholar
Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S: Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science. 1998, 280: 1262-1265. 10.1126/science.280.5367.1262.
Article
PubMed
Google Scholar
Fjeld CC, Rice AE, Kim Y, Gee KR, Denu JM: Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol Chem. 2000, 275: 6749-6757. 10.1074/jbc.275.10.6749.
Article
PubMed
Google Scholar
Parks JM, Hu H, Rudolph J, Yang W: Mechanism of Cdc25B phosphatase with the small molecule substrate p-nitrophenyl phosphate from QM/MM-MFEP calculations. J Phys Chem B. 2009, 113: 5217-5224. 10.1021/jp805137x.
Article
PubMed
PubMed Central
Google Scholar
Deschenes-Simard X, Kottakis F, Meloche S, Ferbeyre G: ERKs in cancer: friends or foes?. Cancer Res. 2014, 74: 412-419. 10.1158/0008-5472.CAN-13-2381.
Article
PubMed
Google Scholar
Keyse SM: Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008, 27: 253-261. 10.1007/s10555-008-9123-1.
Article
PubMed
Google Scholar
Ferguson BS, Harrison BC, Jeong MY, Reid BG, Wempe MF, Wagner FF, Holson EB, McKinsey TA: Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2013, 110: 9806-9811. 10.1073/pnas.1301509110.
Article
PubMed
PubMed Central
Google Scholar
Rui L, Healy JI, Blasioli J, Goodnow CC: ERK signaling is a molecular switch integrating opposing inputs from B cell receptor and T cell cytokines to control TLR4-driven plasma cell differentiation. J Immunol. 2006, 177: 5337-5346. 10.4049/jimmunol.177.8.5337.
Article
PubMed
Google Scholar
Kovanen PE, Bernard J, Al-Shami A, Liu C, Bollenbacher-Reilley J, Young L, Pise-Masison C, Spolski R, Leonard WJ: T-cell development and function are modulated by dual specificity phosphatase DUSP5. J Biol Chem. 2008, 283: 17362-17369. 10.1074/jbc.M709887200.
Article
PubMed
PubMed Central
Google Scholar
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38: W529-W533. 10.1093/nar/gkq399.
Article
PubMed
PubMed Central
Google Scholar