Florkin M, Stotz EH: Enzyme Nomenclature. Comprehensive Biochemistry. 1973, 13:
Google Scholar
Cheek S, Zhang H, Grishin NV: Sequence and structure classification of kinases. J Mol Biol. 2002, 320: 855-881. 10.1016/S0022-2836(02)00538-7.
Article
PubMed
CAS
Google Scholar
Cheek S, Ginalski K, Zhang H, Grishin NV: A comprehensive update of the sequence and structure classification of kinases. BMC Struc Biol. 2005, 5 (6): 1-19.
Google Scholar
Wiberg KB: The deuterium isotope effect. Chem Rev. 1955, 55: 713-743. 10.1021/cr50004a004.
Article
CAS
Google Scholar
Carey FA, Sundberg RJ: Advanced organic chemistry. Part A. Structure and Mechanisms. Plenum Press NewYork
Buss KA, Cooper DC, Ingram-Smith C, Ferry JG, Sanders DA, Hanson MS: Urkinase: Structure of acetate kinase, a member of the ASHKA superfamily of phosphotransferases. J Bacteriol. 2001, 183: 680-686. 10.1128/JB.183.2.680-686.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gorrell A, Ferry JG: Investigation of the Methanosarcina thermophila acetate kinase mechanism by flourescence quenching. Biochemistry. 2007, 46: 14170-14176. 10.1021/bi701292a.
Article
PubMed
CAS
PubMed Central
Google Scholar
Levitzki A, Stallcup WB, Koschland DE: Half-of-sites reactivity and the conformational states of cytidine triphosphate synthetase. Biochemistry. 1971, 10: 3371-3378. 10.1021/bi00794a009.
Article
PubMed
CAS
Google Scholar
Hill TL: Unsymmetrical and conserted examples of the effect of enzyme-enzyme interactions on the steady-state enzyme kinetics. Proc Natl Acad Sci USA. 1978, 75: 1101-1105. 10.1073/pnas.75.3.1101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schulzc IT, Colowick SP: The modification of yeast hexokinases by proteases and its relationship to the dissociation of hexokinase into subunits. J Biol Chem. 1969, 244: 2306-2316.
Google Scholar
Easterby JS, Rosemeyer MA: Purification and subunit interactions of yeast hexokinase. Eur J Biochem. 1972, 2: 241-252.
Article
Google Scholar
Derechin M, Rustum YM, Barnard EA: Dissociation of yeast hexokinase under the influence of substrates. Biochemistry. 1972, 11: 1793-1797. 10.1021/bi00760a009.
Article
PubMed
CAS
Google Scholar
Schmidt JJ, Colowick SP: Purification and serological comparison of the yeast hexokinases P-I and P-II. Arch Biochem Biophys. 1973, 158: 451-457. 10.1016/0003-9861(73)90536-5.
Article
Google Scholar
Hoggett JG, Kellett GL: Yeast hexokinase: Substrate-induced association-dissociation reactions in the binding of glucose to hexokinase P-II. Eur J Biochem. 1976, 66: 65-77. 10.1111/j.1432-1033.1976.tb10426.x.
Article
PubMed
CAS
Google Scholar
Bennett WS, Steitz TA: Glucose-induced conformational changes in yeast hexokinase. Proc Natl Acad Sci USA. 1978, 75: 4848-4852. 10.1073/pnas.75.10.4848.
Article
PubMed
CAS
PubMed Central
Google Scholar
Katzen HM, Schimke RT: Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and properties. Proc Natl Acad Sci USA. 1965, 54: 1218-1225. 10.1073/pnas.54.4.1218.
Article
PubMed
CAS
PubMed Central
Google Scholar
Steitz TA, Anderson WF, Fletterick RJ, Anderson CM: High resolution crystal structures of yeast hexokinase complexes with substrates, activators and inhibitors. J Biol Chem. 1977, 252: 4494-4500.
PubMed
CAS
Google Scholar
Anderson CM, Stenkamp RE, Steitz TA: Sequencing a protein by X-ray crystallography: II, Refinement of yeast hexokinase B co-ordinates and sequence at 2.1 Å resolution. J Mol Biol. 1978, 123: 15-33. 10.1016/0022-2836(78)90374-1.
Article
PubMed
CAS
Google Scholar
Anderson CM, Stenkamp RE, McDonald RC, Steitz TA: A refind model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978, 123: 207-219. 10.1016/0022-2836(78)90321-2.
Article
PubMed
CAS
Google Scholar
Bennett WS, Steitz TA: Glucose-induced conformational change in yeast hexokinase. Proc Natl Acad Sci USA. 1978, 75: 4848-4852. 10.1073/pnas.75.10.4848.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bennett WS, Steitz TA: Structure of a complex between yeast hexokinase A and glucose: II. Detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimer. J Mol Biol. 1980, 140: 211-230. 10.1016/0022-2836(80)90103-5.
Article
PubMed
CAS
Google Scholar
Shoham M, Steitz TA: The 6-hydroxymethyl group of a hexose is essential for the substrate-induced closure of the cleft in hexokinase. Biochem Biophys Acta. 1982, 705: 380-384. 10.1016/0167-4838(82)90260-6.
PubMed
CAS
Google Scholar
Shill JP, Peters BA, Neet KE: Monomer-dimer equilbriums of yeast hexokinase during reacting enzyme sedimentation. Biochemistry. 1974, 13: 3864-3871. 10.1021/bi00716a007.
Article
PubMed
CAS
Google Scholar
Womack F, Colowick SP: Catalytic activity with associated and dissociated forms of the yeast hexokinases. Arch Biochmem Biophys. 1978, 191: 742-747. 10.1016/0003-9861(78)90415-0.
Article
CAS
Google Scholar
Mayes EL, Hoggett JG, Kellett GL: The binding of glucose to native and proteolytically modified yeast hexokinase PI. Eur J Biochem. 1983, 133: 127-134. 10.1111/j.1432-1033.1983.tb07437.x.
Article
PubMed
CAS
Google Scholar
Tickner EL, Hoggett JG, Kellett GL: The cooperative binding of glucose to yeast hexokinase PI dimer. Biochem Biophys Res Commun. 1976, 72: 808-815. 10.1016/S0006-291X(76)80205-7.
Article
PubMed
CAS
Google Scholar
Haslam E: Shikimic Acid: Metabolism and Metabolites. 1993, Wiley: Chichester
Google Scholar
Vonrhein C, Schlauderer GJ, Schulz GF: Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure. 1995, 3: 483-490. 10.1016/S0969-2126(01)00181-2.
Article
PubMed
CAS
Google Scholar
Gu Y, Reshetnikova L, Li Y, Wu Y, Yan H, Singh S, Ji X: Crystal Structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol. 2002, 319: 779-789. 10.1016/S0022-2836(02)00339-X.
Article
PubMed
CAS
Google Scholar
Goldhammer AR, Paradies HH: Phosphofructokinase: structure and function. Current Topics in Cellular Regulation. Edited by: Horecker BL, Stadtman ER. 1979, Academic Press: New York, 109-141.
Google Scholar
Valdez BC, French BA, Younathan ES, Chang SH: Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. J Biol Chem. 1989, 264: 131-135.
PubMed
CAS
Google Scholar
Shapiro BM, Stadman ER: The regulation of glutamine synthesis in microorganisms. Ann Rev Microbiol. 1970, 24: 501-524. 10.1146/annurev.mi.24.100170.002441.
Article
CAS
Google Scholar
Stadtman ER, Ginsburg A: The Enzymes, vol 10, ed. Edited by: Boyer PD. 1974, Academic Press: New York, 755-807.
Google Scholar
Brown JR, Masuchi Y, Robb FT, Doolittle WF: Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol. 1994, 38: 566-576.
Article
PubMed
CAS
Google Scholar
Tyler B: Regulation of the assimilation of nitrogen compounds. Ann Rev Biochem. 1978, 47: 1127-1162. 10.1146/annurev.bi.47.070178.005403.
Article
PubMed
CAS
Google Scholar
Gaillardin CM, Magasanik B: Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes. J Bacteriol. 1978, 133: 1329-1338.
PubMed
CAS
PubMed Central
Google Scholar
Foor F, Jannsen KA, Magasanik B: Regulation of synthesis of glutamine synthetase by adenylylated glutamine synthetase. Proc Natl Acad Sci USA. 1975, 75: 4844-4848.
Article
Google Scholar
Janssen KA, Magasanik B: Glutamine synthetase of Klebsiella aerogenes: genetic and physiological properties of mutants in the adenylylation system. J Bacteriol. 1977, 129: 993-1000.
PubMed
CAS
PubMed Central
Google Scholar
Senior PJ: Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol. 1975, 123: 407-418.
PubMed
CAS
PubMed Central
Google Scholar
Ginsberg A, Stadtman ER: Enzymes of Glutamine Metabolism. Edited by: Prusiner SR, Stadman ER. 1973, Academic Press, New York, 9-44.
Google Scholar
Wolhueter RM, Schutt H, Holzer H: Enzymes of Glutamine Metabolism. Edited by: Prusiner SR, Stadman ER. 1973, Academic Press, New York, 45-61.
Google Scholar
Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B: Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977, 129: 1001-1009.
PubMed
CAS
PubMed Central
Google Scholar
Bloom FR, Streicher SL, Tyler B: Regulation of enzyme synthesis by glutamine synthetase of Salmonella typhimurium: a factor in addition to glutamine synthetase is required for activation of enzyme formation. J Bacteriol. 1977, 130: 983-990.
PubMed
CAS
PubMed Central
Google Scholar
Holzer H, Schutt H, Mašek Z, Mecke D: Regulation of two forms of glutamine synthetase in Escherichia coli by the ammonium content of the growth medium. Proc Natl Acad Sci USA. 1968, 60: 721-724. 10.1073/pnas.60.2.721.
Article
PubMed
CAS
PubMed Central
Google Scholar
Woolfolk CA, Shapiro B, Stadtman ER: Regulation of glutamine synthetase I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966, 116: 177-192.
Article
PubMed
CAS
Google Scholar
Kustu SG, McKereghan K: Mutations affecting glutamine synthetase activity in Salmonella typhimurium. J Bacteriol. 1975, 122: 1006-1016.
PubMed
CAS
PubMed Central
Google Scholar
Shirakihara Y, Evans PR: Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988, 204: 973-994. 10.1016/0022-2836(88)90056-3.
Article
PubMed
CAS
Google Scholar
Rypniewski WR, Evans PR: Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989, 207: 805-821. 10.1016/0022-2836(89)90246-5.
Article
PubMed
CAS
Google Scholar
Schirmer T, Evans PR: Structural basis of the allosteric behaviour of phosphofructokinase. Nature. 1990, 343: 140-145. 10.1038/343140a0.
Article
PubMed
CAS
Google Scholar
Heller S: 1H NMR studies on deuterium - hydrogen exchange at C-5 in uridines. Biochem Biophys Res Commun. 1968, 32: 998-1001. 10.1016/0006-291X(68)90127-7.
Article
PubMed
CAS
Google Scholar
Livramento J, Thomas GJ: Detection of hydrogen deuterium exchange in purines by laser-raman spectroscopy. Adenosine 5'-monophosphate and polyriboadenylic acid. J Amer Chem Soc. 1974, 96: 6529-6531. 10.1021/ja00827a054.
Article
CAS
Google Scholar
Thomas GJ, Livramento J: Kinetics of hydrogen-deuterium exchange in adenosine 5'-monophosphate, adenosine 3':5'-monophosphate and poly(riboadenylic acid) determined by laser-raman spectroscopy. Biochemistry. 1975, 14: 5210-5218. 10.1021/bi00694a030.
Article
PubMed
CAS
Google Scholar
Perfil'eva EA, Khropov Yu V, Khachatryan L, Bulargina TV, Baranova LA, Gulyaev NN, Libinzon RE, Severin ES: Adenylate cyclase from rabbit heart: investigation of substrate-binding site. Biokhimiia. 1981, 46: 1127-1133.
Google Scholar
Baranova LA, Grivennikov IA, Gulyaev NN: Interaction of N1-, N6- N8-substituted derivatives of adenosine-5'-triphosphate with the catalytic subunit of cAMP-dependent protein kinase from rabbit skeletal muscles. Biokhimiia. 1982, 47: 1534-1541.
Google Scholar
Saidenberg DM, Passarelli AW, Rodrigues AV, Basso LA, Santos DS, Palma MS: Shikimate kinase (EC 2.7.171) from Mycobacteriumtuberculosis: Kinetics and structural dynamics of a potential molecular target for drug development. Curr Med Chem. 2011, 47: 1299-1310.
Article
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.
Article
PubMed
CAS
Google Scholar