Arias HR: Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int. 2000, 36: 595-645. 10.1016/S0197-0186(99)00154-0.
Article
CAS
PubMed
Google Scholar
Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N: Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. J Mol Biol. 1999, 288: 765-786. 10.1006/jmbi.1999.2721.
Article
CAS
PubMed
Google Scholar
Devillers-Thiery A, Galzi JL, Eisele JL, Bertrand S, Bertrand D, Changeux JP: Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membr. Biol,. 1993, 136: 97-112.
Article
CAS
Google Scholar
Karlin A, Akabas MH: Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995, 15: 1231-1244.
Article
CAS
PubMed
Google Scholar
Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA: Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor superfamily. Nature. 1987, 328: 221-227. 10.1038/328221a0.
Article
CAS
PubMed
Google Scholar
Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H: The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature. 1987, 328 (6127): 215-220. 10.1038/328215a0.
Article
CAS
PubMed
Google Scholar
Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D: Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science. 1991, 254: 432-437.
Article
CAS
PubMed
Google Scholar
Jackson MB, Yakel JL: The 5-HT3 receptor channel. Annu Rev Physiol. 1995, 57: 447-468. 10.1146/annurev.physiol.57.1.447.
Article
CAS
PubMed
Google Scholar
Gill CH, Peters JA, Lambert JJ: An electrophysiological investigation of the properties of a murine recombinant 5-HT3 receptor stably expressed in HEK 293 cells. Br J Pharmacol. 1995, 114: 1211-1221.
Article
CAS
PubMed Central
PubMed
Google Scholar
Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF: The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature. 1999, 397: 359-363. 10.1038/16941.
Article
CAS
PubMed
Google Scholar
Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L, Jackson MR, Lovenberg TW, Erlander MG: The Pharmacological and Functional Characteristics of the Serotonin 5-HT3A Receptor Are Specifically Modified by a 5-HT3B Receptor Subunit. J. Biol. Chem. 1999, 274: 30799-30810. 10.1074/jbc.274.43.30799.
Article
CAS
PubMed
Google Scholar
Downie DL, Hope AG, Lambert JJ, Peters JA, Blackburn TP, Jones BJ: Pharmacological characterization of the apparent splice variants of the murine 5-HT3 R-A subunit expressed in Xenopus laevis oocytes. Neuropharmacology. 1994, 33: 473-482. 10.1016/0028-3908(94)90078-7.
Article
CAS
PubMed
Google Scholar
Hope AG, Downie DL, Sutherland L, Lambert JJ, Peters JA, Burchell B: Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur J Pharmacol. 1993, 245: 187-192. 10.1016/0922-4106(93)90128-V.
Article
CAS
PubMed
Google Scholar
Niemeyer MI, Lummis SC: Different efficacy of specific agonists at 5-HT3 receptor splice variants: the role of the extra six amino acid segment. Br J Pharmacol. 1998, 123: 661-666.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gandara DR, Roila F, Warr D, Edelman MJ, Perez EA, Gralla RJ: Consensus proposal for 5HT3 antagonists in the prevention of acute emesis related to highly emetogenic chemotherapy. Dose, schedule, and route of administration. Support Care Cancer. 1998, 6 (3): 237-343. 10.1007/s005200050160.
Article
CAS
PubMed
Google Scholar
Johnson BA, Roache JD, Javors MA, DiClemente CC, Cloninger CR, Prihoda TJ, PS Bordnick, Ait-Daoud N, Hensler J: Ondansetron for reduction of drinking among biologically predisposed alcoholic patients: A randomized controlled trial. JAMA. 2000, 284 (8): 963-971. 10.1001/jama.284.8.963.
Article
CAS
PubMed
Google Scholar
Ait-Daoud N, Johnson BA, Prihoda TJ, Hargita ID: Combining ondansetron and naltrexone reduces craving among biologically predisposed alcoholics: preliminary clinical evidence. Psychopharmacology (Berl). 2001, 154: 23-27. 10.1007/s002130000607.
Article
CAS
Google Scholar
Hibert MF, Hoffmann R, Miller RC, Carr AA: Conformation-activity relationship study of 5-HT3 receptor antagonists and a definition of a model for this receptor site. J Med Chem. 1990, 33: 1594-1600.
Article
CAS
PubMed
Google Scholar
Clark RD, Miller AB, Berger J, Repke DB, Weinhardt KK, Kowalczyk BA, Eglen RM, DW Bonhaus, Lee CH, Michel AD: 2-(Quinuclidin-3-yl) pyrido [4,3-b] indol-1-ones and isoquinolin-1-ones. Potent conformationally restricted 5-HT3 receptor antagonists. J Med Chem. 1993, 36 (18): 2645-2657.
Article
CAS
PubMed
Google Scholar
Daveu C, Bureau R, Baglin I, Prunier H, Lancelot JC, Rault S: Definition of a pharmacophore for partial agonists of serotonin 5-HT3 receptors. J Chem Inf Comput Sci. 1999, 39: 362-369. 10.1021/ci980153u.
Article
CAS
PubMed
Google Scholar
Swain CJ, Baker R, Kneen C, Herbert R, Moseley J, Saunders J, Seward EM, Stevenson GI, Beer M, Stanton J: Novel 5-HT3 antagonists: indol-3-ylspiro (azabicycloalkane-3, 5'(4'H)-oxazoles). J Med Chem. 1992, 35: 1019-1031.
Article
CAS
PubMed
Google Scholar
Orjales A, Mosquera R, Labeaga L, Rodes R: New 2-piperazinylbenzimidazole derivatives as 5-HT3 antagonists. Synthesis and pharmacological evaluation. . J. Med. Chem. 1997, 40: 586-593. 10.1021/jm960442e.
Article
CAS
PubMed
Google Scholar
Parihar HS, Suryanarayanan A, Ma C, Joshi P, Venkataraman P, Schulte MK, Kirschbaum KS: 5-HT (3) R binding of lerisetron: an interdisciplinary approach to drug-Receptor interactions. Bioorg Med Chem Lett. 2001, 11: 2133-2136. 10.1016/S0960-894X(01)00417-6.
Article
CAS
PubMed
Google Scholar
Yan D, Schulte MK, Bloom KE, White MM: Structural features of the ligand-binding domain of the serotonin 5HT3 receptor. J Biol Chem. 1999, 274: 5537-5541. 10.1074/jbc.274.9.5537.
Article
CAS
PubMed
Google Scholar
Venkataraman P, Schulte MK: Site directed mutagenesis of Y140 – K153 of the serotonin type 3 receptor binding site supports a β-configuration. Soc. Neurosci. Abstracts. 2000, 26: 613.13 (abstract).-
Google Scholar
Spier AD, Lummis SCR: The role of tryptophan residues in the 5-Hydroxytryptamine (3) receptor ligand binding domain. J Biol Chem. 2000, 275: 5620-5625. 10.1074/jbc.275.8.5620.
Article
CAS
PubMed
Google Scholar
Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK: Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001, 411: 269-276. 10.1038/35077011.
Article
CAS
PubMed
Google Scholar
Dougherty DA: Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996, 271: 163-168.
Article
CAS
PubMed
Google Scholar
Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA: From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A. 1998, 95: 12088-12093. 10.1073/pnas.95.21.12088.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li L, Zhong W, Zacharias N, Gibbs C, Lester HA, Dougherty DA: The tethered agonist approach to mapping ion channel proteins–toward a structural model for the agonist binding site of the nicotinic acetylcholine receptor. Chem Biol. 2001, 1: 47-58. 10.1016/S1074-5521(00)00055-7.
Article
Google Scholar
Kwasigroch J, Chomileir J, Mornon J: A global taxonomy of loops in globular proteins. J. Mol. Biol. 1996, 259: 855-872. 10.1006/jmbi.1996.0363.
Article
CAS
PubMed
Google Scholar
Steward LJ, Boess FG, Steele JA, Liu D, Wong N, Martin IL: Importance of phenylalanine 107 in agonist recognition by the 5-hydroxytryptamine (3A) receptor. Mol Pharmacol. 2000, 57: 1249-55.
CAS
PubMed
Google Scholar
Boess FG, Steward LJ, Steele JA, Liu D, Reid J, Glencorse TA, Martin IL: Analysis of the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: importance of glutamate 106. Neuropharmacology. 1997, 36: 637-47. 10.1016/S0028-3908(97)00044-0.
Article
CAS
PubMed
Google Scholar