Minassian BA: Lafora’s disease: towards a clinical, pathologic, and molecular synthesis. Pediatr Neurol. 2001, 25 (1): 21-29. 10.1016/S0887-8994(00)00276-9.
Article
PubMed
CAS
Google Scholar
Gentry MS, Roma-Mateo C, Sanz P: Laforin, a protein with many faces: glucan phosphatase, adapter protein, and others. FEBS J. 2013, 280 (2): 525:37-
Article
PubMed
Google Scholar
Gentry MS, Dixon JE, Worby CA: Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci. 2009, 34 (12): 628-639. 10.1016/j.tibs.2009.08.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Delgado-Escueta AV: Advances in lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep. 2007, 7 (5): 428-433. 10.1007/s11910-007-0066-7.
Article
PubMed
CAS
Google Scholar
Ganesh S, Puri R, Singh S, Mittal S, Dubey D: Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J Hum Genet. 2006, 51 (1): 1-8. 10.1007/s10038-005-0321-1.
Article
PubMed
CAS
Google Scholar
Singh S, Ganesh S: Lafora progressive myoclonus epilepsy: a meta-analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum Mutat. 2009, 30 (5): 715-723. 10.1002/humu.20954.
Article
PubMed
CAS
Google Scholar
Gentry MS, Pace RM: Conservation of the glucan phosphatase laforin is linked to rates of molecular evolution and the glycogen metabolism of the organism. BMC Evol Biol. 2009, 9 (1): 138-10.1186/1471-2148-9-138.
Article
PubMed
PubMed Central
Google Scholar
Gentry MS, Dowen RH, Worby CA, Mattoo S, Ecker JR, Dixon JE: The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. J Cell Biol. 2007, 178 (3): 477-488. 10.1083/jcb.200704094.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang J, Stuckey JA, Wishart MJ, Dixon JE: A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem. 2002, 277 (4): 2377-2380. 10.1074/jbc.C100686200.
Article
PubMed
CAS
Google Scholar
Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, Dunham I, Gardner R, Fong CY, Carpenter S, Jardim L, Satishchandra P, Andermann E, Snead OC, Lopes-Cendes I, Tsui LC, Delgado-Escueta AV, Rouleau GA, Scherer SW: Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998, 20 (2): 171-174.
Article
PubMed
CAS
Google Scholar
Serratosa JM, Gomez-Garre P, Gallardo ME, Anta B, de Bernabe DB, Lindhout D, Augustijn PB, Tassinari CA, Malafosse RM, Topcu M, Grid D, Dravet C, Berkovic SF, de Córdoba SR: A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2). Hum Mol Genet. 1999, 8 (2): 345-352. 10.1093/hmg/8.2.345.
Article
PubMed
CAS
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Daview GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004, 382: 769-781. 10.1042/BJ20040892.
Article
PubMed
CAS
PubMed Central
Google Scholar
Christiansen C, Hachem MA, Glaring MA, Vikso-Nielsen A, Sigurskjold BW, Svensson B, Blennow A: A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett. 2009, 583 (7): 1159-1163. 10.1016/j.febslet.2009.02.045.
Article
PubMed
CAS
Google Scholar
Machovic M, Janecek S: Starch-binding domains in the post-genome era. Cell Mol Life Sci. 2006, 63 (23): 2710-2724. 10.1007/s00018-006-6246-9.
Article
PubMed
CAS
Google Scholar
Janecek S, Svensson B, MacGregor EA: Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzym Microb Technol. 2011, 49 (5): 429-440. 10.1016/j.enzmictec.2011.07.002.
Article
CAS
Google Scholar
Worby CA, Gentry MS, Dixon JE: Laforin: A dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem. 2006, 281 (41): 30412-30418. 10.1074/jbc.M606117200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA, Depaoli-Roach AA, Roach PJ: Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A. 2007, 104 (49): 19262-19266. 10.1073/pnas.0707952104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli-Roach AA, Roach PJ: Abnormal metabolism of glycogen phosphate as a cause for lafora disease. J Biol Chem. 2008, 283 (49): 33816-33825. 10.1074/jbc.M807428200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tagliabracci VS, Heiss C, Karthik C, Contreras CJ, Glushka J, Ishihara M, Azadi P, Hurley TD, DePaoli-Roach AA, Roach PJ: Phosphate incorporation during glycogen synthesis and Lafora disease. Cell Metab. 2011, 13 (3): 274-282. 10.1016/j.cmet.2011.01.017.
Article
PubMed
CAS
PubMed Central
Google Scholar
Roach PJ, Skurat AV, Harris RA: Regulation of glycogen metabolism. The Endocrine Pancreas and Regulation of Metabolism. Edited by: Jefferson LS, Cherrington AD. 2001, New York, NY: Oxford University Press, Inc, 609-647.
Google Scholar
Lomako J, Lomako WM, Kirkman BR, Whelan WJ: The role of phosphate in muscle glycogen. Biofactors. 1994, 4 (3–4): 167-171.
PubMed
CAS
Google Scholar
Lomako J, Lomako WM, Whelan WJ, Marchase RB: Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase. FEBS Lett. 1993, 329 (3): 263-267. 10.1016/0014-5793(93)80234-L.
Article
PubMed
CAS
Google Scholar
Nitschke F, Wang P, Schmieder P, Girard JM, Awrey DE, Wang T, Israelian J, Zhao X, Turnbull J, Heydenreich M, Kleinpeter E, Steup M, Minassian BA: Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy lafora disease. Cell Metab. 2013, 17 (5): 756-767. 10.1016/j.cmet.2013.04.006.
Article
PubMed
CAS
Google Scholar
Roach PJ: Are there errors in glycogen biosynthesis and is laforin a repair enzyme?. FEBS Lett. 2011, 585 (20): 3216-3218. 10.1016/j.febslet.2011.09.009.
Article
PubMed
CAS
Google Scholar
Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS: Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012, 441 (3): 763-787. 10.1042/BJ20111416.
Article
PubMed
CAS
Google Scholar
Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, Israelian J, Wang Y, Ackerley CA, Wang P, Liu Y, Minassian BA: Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. J Biol Chem. 2012, 287 (30): 25650-25659. 10.1074/jbc.M111.331611.
Article
PubMed
CAS
PubMed Central
Google Scholar
Castanheira P, Moreira S, Gama M, Faro C: Escherichia coli expression, refolding and characterization of human laforin. Protein Expr Purif. 2010, 71 (2): 195-199. 10.1016/j.pep.2010.02.004.
Article
PubMed
CAS
Google Scholar
Moreira S, Castanheira P, Casal M, Faro C, Gama M: Expression of the functional carbohydrate-binding module (CBM) of human laforin. Protein Expr Purif. 2010, 74 (2): 169-174. 10.1016/j.pep.2010.06.019.
Article
PubMed
CAS
Google Scholar
Sherwood AR, Paasch BC, Worby CA, Gentry MS: A malachite green-based assay to assess glucan phosphatase activity. Anal Biochem. 2013, 435 (1): 54-56. 10.1016/j.ab.2012.10.044.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dukhande VV, Rogers DM, Roma-Mateo C, Donderis J, Marina A, Taylor AO, Sanz P, Gentry MS: Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity. PLoS One. 2011, 6 (8): e24040-10.1371/journal.pone.0024040.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gentry MS, Worby CA, Dixon JE: Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci U S A. 2005, 102 (24): 8501-8506. 10.1073/pnas.0503285102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vander Kooi CW, Taylor AO, Pace RM, Meekins DA, Guo HF, Kim Y, Gentry MS: From the Cover: Structural basis for the glucan phosphatase activity of Starch Excess4. Proc Natl Acad Sci U S A. 2010, 107 (35): 15379-15384. 10.1073/pnas.1009386107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Meekins DA, Guo HF, Husodo S, Paasch BC, Bridges TM, Santelia D, Kotting O, Vander Kooi CW, Gentry MS: Structure of the Arabidopsis glucan phosphatase like sex four2 reveals a unique mechanism for starch dephosphorylation. Plant Cell. 2013, 25 (6): 2302-2314. 10.1105/tpc.113.112706.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ganesh S, Tsurutani N, Suzuki T, Hoshii Y, Ishihara T, Delgado-Escueta AV, Yamakawa K: The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochem Biophys Res Commun. 2004, 313 (4): 1101-1109. 10.1016/j.bbrc.2003.12.043.
Article
PubMed
CAS
Google Scholar
Liu Y, Wang Y, Wu C, Liu Y, Zheng P: Dimerization of Laforin is required for its optimal phosphatase activity, regulation of GSK3beta phosphorylation, and Wnt signaling. J Biol Chem. 2006, 281 (46): 34768-34774. 10.1074/jbc.M607778200.
Article
PubMed
CAS
Google Scholar
Roma-Mateo C, Solaz-Fuster MC, Gimeno-Alcaniz JV, Dukhande VV, Donderis J, Marina A, Criado O, Koller A, Rodriguez De Cordoba S, Gentry MS, Sanz P: Laforin, a dual specificity protein phosphatase involved in Lafora disease, is phosphorylated at Ser25 by AMP-activated protein kinase. Biochem J. 2011, 439 (2): 265-275. 10.1042/BJ20110150.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006, 7 (11): 833-846. 10.1038/nrm2039.
Article
PubMed
CAS
Google Scholar
Denu JM, Zhou G, Wu L, Zhao R, Yuvaniyama J, Saper MA, Dixon JE: The Purification and Characterization of a Human Dual-specific Protein Tyrosine Phosphatase. J Biol Chem. 1995, 270 (8): 3796-3803. 10.1074/jbc.270.8.3796.
Article
PubMed
CAS
Google Scholar
Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE: Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci U S A. 2011, 108 (29): 11860-11865. 10.1073/pnas.1109290108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee J-O, Yang H, Georgescu M-M, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP: Crystal Structure of the PTEN Tumor Suppressor: Implications for Its Phosphoinositide Phosphatase Activity and Membrane Association. Cell. 1999, 99 (3): 323-334. 10.1016/S0092-8674(00)81663-3.
Article
PubMed
CAS
Google Scholar
Yuvaniyama J, Denu JM, Dixon JE, Saper MA: Crystal structure of the dual specificity protein phosphatase VHR. Science. 1996, 272 (5266): 1328-1331. 10.1126/science.272.5266.1328.
Article
PubMed
CAS
Google Scholar
Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J. 2008, 416 (1): 27-36. 10.1042/BJ20080580.
Article
PubMed
CAS
Google Scholar
Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts Van Bueren A, Law V: A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 2006, 281 (1): 587-598. 10.1074/jbc.M509958200.
Article
PubMed
CAS
Google Scholar
Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP: Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 1997, 5 (5): 647-661. 10.1016/S0969-2126(97)00220-7.
Article
PubMed
CAS
Google Scholar
Steichen JM, Petty RV, Sharkey TD: Domain characterization of a 4-alpha-glucanotransferase essential for maltose metabolism in photosynthetic leaves. J Biol Chem. 2008, 283 (30): 20797-20804. 10.1074/jbc.M803051200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koveal D, Clarkson MW, Wood TK, Page R, Peti W: Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol. 2013, 425 (12): 2219-2231. 10.1016/j.jmb.2013.03.023.
Article
PubMed
CAS
PubMed Central
Google Scholar
Santelia D, Kotting O, Seung D, Schubert M, Thalmann M, Bischof S, Meekins DA, Lutz A, Patron N, Gentry MS, Allain FH, Zeeman SC: The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell. 2011, 23 (11): 4096-4111. 10.1105/tpc.111.092155.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kotting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M, Ritte G, Zeeman SC: STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana. Plant Cell. 2009, 21 (1): 334-346. 10.1105/tpc.108.064360.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hsu S, Kim Y, Li S, Durrant ES, Pace RM, Woods VL, Gentry MS: Structural insights into glucan phosphatase dynamics using amide hydrogen-deuterium exchange mass spectrometry. Biochemistry. 2009, 48 (41): 9891-9902. 10.1021/bi9008853.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ianzano L, Zhang J, Chan EM, Zhao X, Lohi H, Scherer SW, Minassian BA: Lafora progressive myoclonus epilepsy mutation database-EPM2A and NHLRC1 (EMP2B) genes. Hum Mutat. 2005, 26 (4): 397-
Article
PubMed
Google Scholar