Moss B: Poxviridae: the viruses and their replication. In Fields Virology, 3rd edn (Edited by Field BN, Knipe DM, Howley, PM) Philadelphia: Lippincott-Raven,. 1996, 2637-2671.
Google Scholar
Rempel RE, Traktman P: Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. J Virol. 1992, 66: 4413-4426.
PubMed Central
CAS
PubMed
Google Scholar
Lin SQ, Wen C, Broyles SS: The vaccinia virus B1R gene product is a serine/threonine protein kinase. J Virol. 1992, 66: 2717-2723.
PubMed Central
CAS
PubMed
Google Scholar
Lin S, Broyles SS: Vaccinia protein kinase 2: a second essential serine/threonine protein kinase encoded by vaccinia virus. Proc Natl Acad Sci U S A. 1994, 91: 7653-7657.
Article
PubMed Central
CAS
PubMed
Google Scholar
Traktman P, Caligiuri A, Jesty SA, Liu K, Sankar U: Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of virion morphogenesis. J Virol. 1995, 69: 6581-6587.
PubMed Central
CAS
PubMed
Google Scholar
Wang S, Shuman S: Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J Virol. 1995, 69: 6376-88.
PubMed Central
CAS
PubMed
Google Scholar
Banham AH, Smith GL: Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology. 1992, 191: 803-812.
Article
CAS
PubMed
Google Scholar
Rempel RE, Anderson MK, Evans E, Traktman P: Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. J Virol. 1990, 64: 574-583.
PubMed Central
CAS
PubMed
Google Scholar
Banham AH, Leader DP, Smith GL: Phosphorylation of ribosomal proteins by the vaccinia virus B1R protein kinase. FEBS Lett. 1993, 321: 27-31. 10.1016/0014-5793(93)80614-Z.
Article
CAS
PubMed
Google Scholar
Beaud G, Sharif A, Topa-Masse A, Leader DP: Ribosomal protein S2/Sa kinase purified from HeLa cells infected with vaccinia virus corresponds to the B1R protein kinase and phosphorylates in vitro the viral ssDNA-binding protein. J Gen Virol. 1994, 75: 283-293.
Article
CAS
PubMed
Google Scholar
Beaud G, Beaud R, Leader DP: Vaccinia virus gene H5R encodes a protein that is phosphorylated by the multisubstrate vaccinia virus B1R protein kinase. J Virol. 1995, 69: 1819-1826.
PubMed Central
CAS
PubMed
Google Scholar
Beaud G, Beaud R: Temperature-dependent phosphorylation state of the H5R protein synthesised at the early stage of infection in cells infected with vaccinia virus ts mutants of the B1R and F10L protein kinases. Intervirology. 2000, 43: 67-70. 10.1159/000025025.
Article
CAS
PubMed
Google Scholar
Beaud G, Beaud R: Preferential virosomal location of underphosphorylated H5R protein synthesized in vaccinia virus-infected cells. J Gen Virol. 1997, 78: 3297-3302.
Article
CAS
PubMed
Google Scholar
Kovacs GR, Moss B: The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J Virol. 1996, 70: 6796-6802.
PubMed Central
CAS
PubMed
Google Scholar
Black EP, Moussache N, Condit RC: Characterization of the interactions among vaccinia virus transcription factors G2R, A18R, and H5R. Virology. 1998, 245: 313-322. 10.1006/viro.1998.9166.
Article
CAS
PubMed
Google Scholar
DeMasi J, Traktman P: Clustered charge-to-alanine mutagenesis of the vaccina virus H5 gene: isolation of a dominant temperature-sensitive mutant with a profound defect in morphogenesis. J Virol. 2000, 74: 2393-2405. 10.1128/JVI.74.5.2393-2405.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E: The complete sequence of vaccinia virus. Virology. 1990, 179: 247-266.
Article
CAS
PubMed
Google Scholar
Pinna LA, Ruzzene M: How do protein kinases recognize their substrates?. Biochim Biophys Acta. 1996, 1314: 191-225. 10.1016/S0167-4889(96)00083-3.
Article
CAS
PubMed
Google Scholar
Mohandas AR, Dekaban GA, Dales S: Vaccinia virion surface polypeptide Ag35 expressed from a baculovirus vector is targeted to analogous poxvirus and insect virus components. Virology. 1994, 200: 207-219. 10.1006/viro.1994.1179.
Article
CAS
PubMed
Google Scholar
Ben-Levy R, Leishton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P: Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J. 1995, 23: 5920-5930.
Google Scholar