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Abstract

Background: Inulosucrase (IslA) from Leuconostoc citreum CVWV28 belongs to a new subfamily of
multidomain fructosyltransferases (FTFs), containing additional domains from glucosyltransferases.
It is not known what the function of the additional domains in this subfamily is.

Results: Through construction of truncated versions we demonstrate that the acquired regions
are involved in anchoring IslA to the cell wall; they also confer stability to the enzyme, generating
a larger structure that affects its kinetic properties and reaction specificity, particularly the
hydrolysis and transglycosylase ratio. The accessibility of larger molecules such as EDTA to the
catalytic domain (where a Ca?* binding site is located) is also affected as demonstrated by the
requirement of 100 times higher EDTA concentrations to inactivate IsIA with respect to the
smallest truncated form.

Conclusion: The C-terminal domain may have been acquired to anchor inulosucrase to the cell
surface. Furthermore, the acquired domains in IslA interact with the catalytic core resulting in a
new conformation that renders the enzyme more stable and switch the specificity from a hydrolytic
to a transglycosylase mechanism. Based on these results, chimeric constructions may become a
strategy to stabilize and modulate biocatalysts based on FTF activity.

Background

Fructansucrases (E.C. 2.4.1._) or fructosyltransferases
(FIFs) are enzymes that catalyze the transfer of the fruc-
tose unit from sucrose to either a growing fructan polymer
chain (transglycosylase activity) or to water (hydrolytic
activity). Among FIFs, levansucrases (E.C. 2.4.1.10) and
inulosucrases (E.C. 2.4.1.9) are the most studied due to
the physiological and industrial implications of levan and
inulin, the product of their transglycosylase activity; while

in levan fructose molecules are linked through B(2-6)
bonds, in inulin the linkages are $(2-1), in both cases with
a relative amount of branching which is dependent on the
source of the enzyme.

FTFs have been reported in both Gram positive and Gram
negative bacteria, but while FTFs from Gram negative bac-
teria have molecular weights ranging from 45 to 64 kDa
[1,2] most FTFs from Gram positive bacteria present addi-
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tional domains and therefore reach molecular weights as
large as 170 kDa [3]. An exception is levansucrase (SacB)
from Bacillus subtilis which has the same architecture as
FTFs from Gram negative bacteria. Its structure consists of
a five-bladed B-propeller single-domain fold enclosing a
funnel-like central cavity, where most of the conserved
residues are located including the catalytic residues Asp86
(nucleophile), Asp247 (stabilizer), and Glu342 (general
acid) [PDB: 10YG]. A detailed analysis of the structure
has provided evidence of the presence of a bound metal
ion, most likely Ca?+, which bounds to amino acids that
are conserved in most of Gram-positive bacteria FTFs. In
SacB, Asp339 in the sequence known as the 33°DEIER
motif makes the major contribution to Ca2+ binding [4].
Ozimek et al. [5], have shown that Ca?+ ions have an
important structural role in levansucrase and inulosucrase
from Lactobacillus reuteri 121, suggesting that the stabiliz-
ing function of Ca2?+ion is a general feature in FIFs from
Gram-positive bacteria. Similarly, in Gram-negative FIFs,
the calcium-binding site appears to be substituted by a
disulphide bridge providing a similar fold-stabilizing role
[6]. In terms of the catalytic domain, FTFs have been clas-
sified in Family 68 of Glycoside Hydrolases [7].

A subfamily of mosaic FTFs observed in Leuconostoc spp.
containing acquired structural domains from the N and C-
terminal regions of glucosyltransferases (GTFs) has
recently been described [8]. Bashton and Chothia [9] have
reviewed the generation of new protein functions by the
combination of domains, describing how domain acqui-
sition may confer new properties to the original enzymes
such as: an increased specificity; a link between domains
that have functional roles; regulate activity; combine
within one chain functions that can act either independ-
ently, in concert, or in new contexts; and provide the
structural framework for the evolution of entirely new
functions. The authors found that in all the studied cases
(45 sets of proteins), the multidomain protein has a func-
tion that is more specific or more complex than that of the
one-domain protein. In the case of mosaic FIFs the conse-
quences of this domain acquisition have not been stud-
ied. The C-terminal region in GTFs, known as the Glucan
Binding Domain (GBD), has been associated in glucan
polymerization, in glucan structure, in the transfer of
products from the catalytic site, in cell surface localiza-
tion, as well as in cell wall binding through a LPXTG motif
[10-13], however, its precise role remains unknown. No
specific function has been associated to the N-terminal
domain, known as the variable region [3,14].

Among the mosaic FTFs, we have previously reported the
characterization of inulosucrase (IslA) from Leuconostoc
citreum CW28. IslA is a cell-associated enzyme with a
molecular weight of 165 kDa [15]. As already described,
this FTF presents an unusual structure: besides the variable
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region in the N-terminus its C-terminal domain presents
80% identity to the GBD of alternansucrase (Asr), a GTF
from L. mesenteroides NRRL B-1355. As its catalytic
domain has 36% identity to the single domain of FIF
SacB, it is not probable that these additional domains may
be involved in fructan specificity. However, they could be
involved in other important properties of the enzyme or
the products, such as stability of the enzyme, molecular
weight of the polymer, reaction specificity (transglycosyla-
tion or hydrolysis), etc.

We have already demonstrated that the C-terminal
domain is not essential for catalytic activity [15]. However
a detailed characterization of truncated versions is
required in order to explore other possible functions of
these additional domains. In this work we report the bio-
chemical characterization of inulosucrase as compared to
three truncated versions: two versions with deletions in
the C-terminus glucan binding domain, and one version
deleted in both C- and N-terminal regions. We provide
evidence demonstrating that the C-terminal region of IslA
is involved in anchoring the enzyme to the cell wall; in
addition, besides conferring stability, the C-terminal
domain modifies the accessibility to the active site, affect-
ing its catalytic properties. This is also demonstrated by
the fact that 100 times lower EDTA concentrations are
required to eliminate Ca2+ions from the catalytic domain
when the C-terminal domain is removed.

Results and Discussion

Construction and expression of IslA truncated mutants
The functional role of the C- and N-terminal domains was
studied through the analysis of the biochemical properties
of three deleted versions of inulosucrase from L. citreum
(IslA) described in Figure 1. IslA2 consists of a 102 kDa
fragment obtained after deletion of 551 amino acid from
the C-terminus: the deleted region is homologous to the
C-terminal region of alternansucrase (Asr) from L.
mesenteroides NRRL B-1355. The second construct is a 80
kDa variant designated as IslA3 and obtained from IsIA2
but deleting also the transition region located between the
C-terminal region and the catalytic domain. Finally, IslA4
is a 64 kDa fragment of IslA constituted only by the cata-
lytic domain, after total elimination of the C-terminal
region and an almost total deletion of the variable region
in the N-terminus (the first 209 of 309 aa). In all cases 16
kDa corresponding to thioredoxin fused to the N-terminal
regions should be included.

All proteins were produced under the control of the
induced arabinose promoter in E. coli, resulting in active
enzymes able to produce polymer. We have already dem-
onstrated that these regions are not essential for the cata-
lytic activity [15], as has also been demonstrated for C-
terminus truncated versions of inulosucrase from L. reuteri
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Figure |

IslA truncated constructions. IslA: complete enzyme; IsIA2: deletion of the C-terminal domain; IsIA3: deletion of the transition
and the C-terminal regions; IslA4: deletion of N/C-terminal region.

[16] and for Asr from L. mesenteroides NRRL B-1355 [17],
which retain their catalytic activity upon modification.
The truncated versions are also less stable than the native
enzyme. However, other consequences besides the lost of
stability may result from domain acquisitions, such as
changes in kinetic properties or reaction specificity.

IslA anchors to Leuconostoc citreum cells

IslA, as well as several other FTFs and GTFs is cell associ-
ated. In some FTFs it has been demonstrated the C-termi-
nal region is responsible for anchoring the enzyme to the
cell by means of the LPXTG motif [3]. The cell associated
FTF from Streptococcus salivarius which is devoid of motif
LPXTG is released from the cells on exposure to sucrose.
Through deletions within the C terminus of this enzyme,
Rathsam and Jacques [18], implicated both the hydropho-
bic and the PGST-rich wall-associated domains in stabiliz-
ing the enzyme on the cell surface. In IslA, neither the
LPXTG motif, nor the PGST motif is present. However, a
blast analysis revealed a 26% identity of its C-terminal
region to the cell wall binding region of amidase (Ami)
from Lysteria monocytogenes. Ami contains 8 modules of
repeat sequences designated as GW that serve to anchor
the protein to lipotheicoic acids of the cell wall [19].

In order to determinate if the acquired C-terminal domain
of IslA could be involved in cell wall anchoring, cells of L.
citreum were produced in the absence of sucrose to avoid
IslA induction. These cells were later contacted with native
IslA and IslA3 (the last one is an IslA form deprived of the
C-terminal region). After intensive washing, IsIA was
strongly retained and active in the cell surface, as demon-
strated by successive activity assays and gel electrophoresis
(Fig. 2a), while IslA3 was not retained (Fig. 2b), demon-
strating that the C-terminus of IslA is involved in cell
attachment.

kDa VTGRS =273 -4 [EDE3 4
PIE e — -
120—>

100—=
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s <—96kDa

Figure 2

Binding assays of native IslA and the truncated form IsIA3
with non induced L. citreum CW28 cells. Molecular weight
control (M). Gel (@) deals with native IslIA (line 1) while gel
(b) with IslA3 (line 1). In both gels line 2 refers to the non
induced L. citreum CW?28 cells; line 3 refers to the washed
non induced cells after contact with the protein; and line 4
refers to the protein solution after contact with non induced
cells.

We have already demonstrated the role of the C-terminal
domain in DsrP, a GIF from L. mesenteroides IBT-PQ. In
particular, the homology of DsrP and DsrE (a dextransu-
crase from L. mesenteroides NRRL B-1299) with the bind-
ing region (CW repeats) of autolysin (LytA) of
Streptococcus pneumoniae and ToxA from Clostridium diffi-
cile lead us to conduct experiments that demonstrated the
anchoring role of this domain in DsrP, as well as in DsrE
[20]. We also conducted similar experiments with par-
tially purified Asr from L. mesenteroides NRRL B-1355,
which is able to bind to non induced L. mesenteroides
NRRL B-1355 (results not shown). Asr is also cell associ-
ated and binds to the cells both in the presence or absence
of its polymer [21]. Asr C-terminal region contains only a
single well defined A repeat: nevertheless, this enzyme has
its own seven distinctive repeat elements of nine amino
acids in this region [22]. Therefore, the C-terminal region
acquisition of FTF may have been a mechanism to display
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Table I: Proposed cell wall association motif in the C-terminal region of several of glycosyltransferases.

Enzyme Microorganism motif Accession number Reference
GTF-I S. downei CW repeats P11001 [41]
GTF-B S. mutans CW repeats AAA88588 [42]
Dsr-E L. mesenteroides CW repeats CAD22883 [20]
Dsr-P L.mesenteroides IBT-PQ CW repeats AAS79426 [20]
Asr L.mesenteroides NRRL B-1355 GW repeats CAB65910 This work
IsIA L. citreum CW 28 GW repeats AAO25086 This work
Inu L. reuteri 121 LPXTG motif AANO05575 [13]
Lev L. reuteri 121 LPXTG motif AAO14618 [13]
FTF S. salivarius PGST motif AANB87104 [43]

and anchor the enzyme in the cell surface in order to pro-
duce a biofilm a common property of these microorgan-
isms. Several structures are displayed in Leuconostoc spp.
FTFs and GTFs to locate them in the cell surface as can be
summarized in Table 1. However the actual mechanism of
protein-cell interaction is still unknown. Further experi-
ments are required to clarify this mechanism.

Characterization of IslA and its truncated versions
Biochemical characterization

In order to determinate the effect of the N/C-terminal
region deletion on the biochemical properties of inulosu-
crase, the influence of pH and temperature on the activity
of the three truncated versions was studied. Although no
changes were observed in the optimal pH for activity in
the complete and truncated versions (pH 6.5), the pH-
activity profile became sharper in the deleted forms
(results not shown), most probably due to the lower sta-
bility of the truncated versions. As far as temperature is
concerned, no major modifications were observed for
IslA2 which retained the optimum temperature of 35°C
of IslA activity; however the optimum temperature for
activity decreased to 30°C when the transition region was
eliminated. A deeper analysis of the truncated IslA forms
stability was carried out at 35°C where it was found that
the half-life of the truncated versions decrease when the
acquired domains are removed (Table 2). These results,
together with those reported by Olivares-Illana et al. [15],
corroborate that the N/C-terminus contribute to stabilize
the catalytic domain. This is also the case of DsrtS, where

the truncated version is more susceptible to thermal dena-
turation [23]. However, the deletion of the C-terminal
region does not always result in a lost of stability, as in the
case of Asr from L. mesenteroides B-1355 where deletions
of the N/C-terminus (with high identity to the C-terminal
domain of IslA) do not affect the thermal stability of the
truncated forms [17].

The polymer structure and the molecular weight of the
polysaccharides produced by the truncated versions were
analyzed by means of 13C NMR: the spectra of the poly-
mer synthesized by the IsIA mutants was identical to the
one obtained from the complete IslA protein, equivalent
to a fructose polymer linked through B(2-1) bonds and
identified as inulin (data not shown). The protein dele-
tions have also no influence in the polymer molecular
weight distribution as observed by gel permeation HPLC:
all polymers have a molecular weight distribution in the
range of 90 000 to 4 400 000 Da, similar to the polymer
produced by IslA. It is therefore possible to conclude that,
although a detailed analysis of the polymer size is difficult
to perform, there are no major differences in product spe-
cificity of the mosaic FIFs and the deleted forms includ-
ing, IslA4 which could be considered equivalent to single
domain FTFs. This phenomenon has also been observed
in Asr, where the deletion of the C-terminal region did not
affect the properties of the product [17]. Similar conse-
quences were observed with C-terminus truncated ver-
sions of inulosucrase from L. reuteri [24] and GTF-I from
Streptococcus downei [25]. Nevertheless it is not possible to

Table 2: Biochemical and kinetic properties of inulosucrase (IslA) from L. citreum CW28 and truncated versions.

Truncated Optimum T Half life @ 35°C Hydrolysis/ KmT (mM) kcat (s!) kcat/Km (mM-!
version °C) (min) transglycosylase s
ratio (%)

IsIA 35 420 40/60 38 25 0.65

IslA2 35 407 38/62 24 28.19 1.17

IsIA3 30 346 61/39 nd nd nd

IslA4 30 128 70/30 142 105 0.73
aMeasured after depletion of 293 mM sucrose. KmT (total Km) was determined from sucrose consumption rate.
IslA3 did not follow a Michaelis Menten kinetic behavior
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generalize this behaviour as when the C-terminal region
was deleted from GTF-1 from S. mutans, the resulting
enzyme lost completely its capacity to synthesize the pol-
ymer, retaining only sucrase activity [26].

Kinetic properties

Total Km and kcat values were determined for IslA as well
as for the truncated versions from initial sucrose con-
sumption rates (Table 2). In this case, all forms exhibit
Michaelis-Menten type kinetics, with the exemption of
IslA3 which was best described by the Hill equation. The
Hill equation has also been applied to describe the kinetic
behavior of inulosucrase and levansucrase from L. reuteri
at 50°C [16] which do not exhibit a saturating behavior.
Although there is no net modification in the catalytic effi-
ciency of the IsIA forms as measured by the kcat/Km ratio,
some interesting observations result from the analysis of
the individual parameters. Even when it is difficult to
define a trend in terms of the apparent total Km value, it
is possible to observe that the smallest IslA versions, lost
sucrose affinity as concluded from a one order of magni-
tude increase in its total Km value. An interesting feature
is that there is also a 2-4 fold increase in its total kcat
value, as if partial elimination of the structure would
result in a facilitated access of the substrates, particularly
the catalytic water to the active site. Changes in sucrose
affinity have also been reported in the truncated GTF-A
from L. reuteri [27] which increased its Km with respect to
the native enzyme. It is interesting to point out that the
total Km value of IslA and IslA2 is similar to the value
reported for most FIFs including both single domain
enzymes such as levansucrases from L. reuteri (21 + 4 mM)
[16], A. diazotrophicus (11.8 mM + 1.4) [28], L. sanfrancis-
censis (13.1 mM) [11] or multidomain FIFs such as L.
mesenteroides NRRL B-512F (LevS) (36.7 + 5.4 mM) [29]
and L. mesenteroides ATCC 1359 (LevC) (27.3 mM) [8].
Interestingly, the lost of affinity, makes it equivalent, in
terms of the total Km value, to single domain levansu-
crases from Gram negative bacteria, such as Z. mobilis [30]
and P. syringae [1] (160 and 122 mM respectively).

We have already demonstrated that IslA, as most FTFs and
GTFs, have a transglycosylase activity which is a function,
among others parameters, of sucrose concentration [31].
When this property was studied for the truncated versions
in a wide substrate concentration range (up to 0.87 M
sucrose) it was found that, as expected, the higher the
sucrose concentration, the higher the transglycosylase
activity. In spite of this result, observed for all IslA forms,
a higher hydrolytic activity was found when the transition
region was eliminated, as shown in Table 2. These results
suggest that in the chimeric construction, the acquired
domains, in particular the transition region, may interact
with the catalytic core, turning the enzyme less hydrolytic,
probably due to the conformation of a larger path for the
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accessibility of the catalytic water molecules to the active
site. In any case, the higher the hydrolytic activity of the
IslA form, the higher its kcat value (Table 2), as a conse-
quence of a preferential transfer of the fructosyl residue to
water than to the polymer acceptor. In the same context,
other factors reducing the hydrolysis in favor of the trans-
glycosylase activity in FTFs include the use of organic sol-
vents [32,33] or the immobilization of the enzyme [34].
It is interesting to observe that in these last cases (high
substrate concentration, use organic of solvents or
enzyme immobilization) the common feature is the
reduction of water activity (a,,) in the vicinity of the active
site.

Effect of the additional regions on calcium diffusion

A putative calcium binding site coordinated by Asp339 of
the 339DEIER motif, where the Glu342 catalytic residue is
also found, has been determined in SacB crystallographic
structure [4]. The authors speculate that in the absence of
Ca?+ions the 349DEIER loop acquire a conformation less
favorable for catalysis.

Considering this structural feature, the Ca2+ ion effect on
IslA4 activity was evaluated. It was found that the activity
is lost when Ca2+ions are depleted using EDTA. However,
when this effect was analyzed in detail, the rate of Ca2*
ions depletion was found to be structure-dependent, as
measured by the rate of activity loss and the higher EDTA
concentrations required to remove Ca2* ions in short
times. These results are summarized in Figure 3, where it
may be observed that while 50 uM of EDTA and 5 minutes
of incubation are enough to deplete IslA4 and IslA3 of
Ca?+ions and activity, 1000 uM and 180 min are required
to achieve the same effect with IslA2. Interestingly, after
40 h incubation of IslA with 5000 uM EDTA, that is 100
fold more EDTA that the concentration used with IslA4
and IslA3, the enzyme still retains 20% of the original
activity. This is probably due to the fact that the three
domain IslA require Ca2+ ions to optimize the activity, but
is not essential, a property that would be inherent to the
mosaic structure. In any case, the interaction of the addi-
tional domains, particularly the transition region, with
the catalytic core put forward to describe the hydrolysis/
transglycosylase reaction ratio variations, could also
explain the difficulties to remove Ca2+ions (Fig. 3) a con-
sequence of a less exposed DEIER motif.

Structural changes influenced by Ca2* ions on the truncated forms

In order to perform a detailed analysis of the role of the
additional domains in inulosucrase stability, the influ-
ence of Ca2* ions in the conformational structure of the
native and truncated versions was studied through the
measurement of intrinsic fluorescence in presence of
EDTA and Ca?* ions. For this purpose the fluorescence
intensity was followed after EDTA addition; when a con-
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Effect of EDTA on native IslA and truncated forms activity.
IslA4 (black circles), IsIA3 (open circles), IsIA2 (black trian-
gles), IslA (open squares). Activity measurements are made
after 5 min of incubation with EDTA for the IslA4 and Is|A3
forms, and after 180 min for native IslA and IsIA2.

stant intensity was reached, Ca2?+ions were restored. The
time scale as well as EDTA and Ca?* ions concentration
was dependent on the IslA form studied. It may be
observed that IslA4 (Fig. 4a) and IslA3 (Fig. 4b) undergo
slight local structural modifications when Ca2+* ions are
depleted by addition of 50 uM EDTA, as deduced from the
fluorescence intensity change. However, a rapid recover
occurs when 500 uM CaCl, are restored. In the case of
IslA4 and IslA3 a complete unfolding is not reached, con-
trary to the observations made in SacB [35] by Petit-Gla-
tron et al, who found that SacB suffers a complete
unfolding which is reverted when Ca2+ ions are restored.
On the other hand, Circular Dichroism (CD) experiments
confirmed that the changes observed in fluorescence dur-
ing Ca?+ depletion did not result in any modification of
the IslA4 secondary structure, as concluded from the CD
spectrum shown in Figure 5a.

Surprisingly, no significative changes in fluorescence
intensity in the absence of Ca2+ ions were observed for
IslA2, even in the presence of 1000 uM EDTA that inacti-
vates the enzyme (Fig. 4c). Similarly, the fluorescence
intensity measurements of IslA in the presence of 5000
uM EDTA during 180 min, imply that no modifications
take place, even when the enzyme retains only 20% of
original activity. The CD experiments performed on IslA
in the absence of Ca2*ions demonstrated no changes in
secondary structure strengthening the hypothesis that the
additional domains confer rigidity to the enzyme, gener-
ating a more stable form even in the absence of Ca2+*ions.
In summary, the smallest versions of IslA: IslA3 and IslA4,

http://www.biomedcentral.com/1471-2091/9/6

loose activity in the absence of Ca2* ions (Fig. 3) with
slight modifications in their tertiary structure (Fig 4);
these changes are reverted when Ca2* ions are restored.
Throughout this process, the secondary structure of IslA4
is conserved. In contrast, IslA and IslA2 retain around
20% and 10% of the original activity respectively, even in
presence of high EDTA concentrations without alterations
in its tertiary structure, indicating that the transition and
the C-terminal regions confer stability to the protein.

Conclusion

Through binding assays, we demonstrated that the C-ter-
minal domain in inulosucrase IslA serves to anchor the
enzyme to the cell surface. The difficulties found to
remove CaZ2* ions as the structure becomes more complex,
from IslA4 to IslA, together with the greater sucrose affin-
ity (smaller Km) and the higher thermostability, allow
also us to conclude that the acquired domains in IslA
interact with the catalytic core resulting in a new confor-
mation that renders the enzyme more stable and gener-
ates a switch in specificity from an hydrolytic to a
transglycosylase mechanism. Actually, this strategy in
nature has been recently observed elsewhere in a com-
pletely different enzyme structure and activity. Trehalose
synthase has been reported both as a single domain
enzyme in Deinococcus radiodurans, Pseudomonas sp,
Pimelobacter sp. [36,37], and as mosaic proteins with a-
amylase regions acquired in the C-terminal domain in
Thermus thermophilus [38]. Wang et al. [38] through dele-
tion of the acquired regions demonstrated also that the
single domain enzyme is not only less stable but hydro-
lyzes more trehalose.

Methods

Cloning and expression of truncated versions

In a previous work, truncated versions were constructed in
order to explore if the C-terminal domain was essential for
activity [15]. In this work, the same truncated versions
were fused to a His tag and expressed under the ara pro-
moter in order to produce and purify enough protein for
characterization. Each gene fragment was amplified from
isIA cloned in plasmid pCR-TOPO [15] using the corre-
sponding  primers:  IslA2  IS2reverso  (CTAATT-
TAAATCGCGTGAAAAGCTAATGGC) and  SPdirevecto
(ACCATGGACG TGAATCAACCACITITAGCG); IslA3
ISE3rvEco (ATC CTC AGA ATT CAA TGC TAA TAA CTC
AAC) and SP directo; Is1A4 BproNae (GAA ATG ACT AGT
GTG CCG GCG CTIT ATA TC) and ISE3rvEco. The amplifi-
cation products were cloned into the pBAD/Thio TOPO
expression vector (Invitrogen, Calsbad, CA). E. coli strain
TOP10 was used to transform the constructed plasmids
and to express the truncated IslA truncated versions. Over-
night cultures of the transformed strains, carried out at
37°C in 50 ml Luria-Bertani medium supplemented with
100 pg/ml ampicillin, were used as inoculum of 950 ml of
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Structure modifications of IslA and truncated forms mediated by EDTA and Ca?* ions measured by intrinsic fluorescence (exci-
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EDTA and 500 uM Ca?* ions; (c) IslA2 1000 uM EDTA and 2000 uM Ca?* jons and (d) IslA 5000 uM EDTA and 7000 uM Ca?*
ions. EDTA is added after the first fluorescence measurement; time of Ca2* ions addition is indicated by an arrow. For each
case, the fluorescence of the heat denaturated protein is shown as a broken line.

the same medium and grown until an 0.6 ODy, ,,,, was
reached. At this time, expression of the recombinant pro-
teins was induced by addition of 0.02% (w/v) L-arabinose
for IslA2 and 0.2% (w/v) for IsIA3 and IslA4 and the tem-
perature reduced to 23°C. Cells were harvested at 1.8
ODGOO nm-*

Preparation of E. coli cell extracts and purification of IslA
and truncated versions

E.coli cells were harvested by centrifugation (10 min, 4°C,
4600 g). The resulting pellet was washed twice with 50
mM pH 6.5 phosphate buffer. Afterwards, cells were sus-
pended in 5 ml of the same buffer and broken at 900 psi
in a French press. Cell debris was removed by centrifuga-

tion for 30 min at 4°C at 10000 g and the supernatant
assayed for activity.

The enzymatic forms were purified by affinity chromatog-
raphy through their His tags. A bed volume of 600 pl of
Ni-nitroacetic acid (Ni-NTA) resin (Qiagen) was used to
bind protein from 5 ml of cell extract. The resin was equil-
ibrated with 3 ml of binding buffer (NaH,PO, 50 mM,
NaCl 300 mM, imidazole 10 mM) pH 7.5 for IslA2 and
pH 7 for IslA3 and IslA4. The cell extract was diluted 1:1
with buffer binding and incubated for 1 h at 4 °C with the
equilibrated resin, followed by washing with 7 ml of the
same buffer containing 30 mM imidazole. Finally the
recombinant protein(s) were eluted with 2 ml of elution
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Circular Dichroism spectra of native IslA and IsIA4 mediated by EDTA and Ca2* ions. (a) IslA4: control (yellow line), IsIA4 after
incubation for 15 min with 0.5 mM EDTA (brown line); IslA4 after incubation for |5 min of the previous sample after restoring
Ca?*ions (I mM) (green line). (b) IslA: control (yellow line), Isl|A after incubation for 180 min with 0.5 mM EDTA (brown line);
IslA after incubation for 180 min of the previous sample after restoring Ca2* ions (8 mM) (green line).

buffer (50 mM NaH,PO,, 300 mM NaCl, 250 mM imida-
zole). The proteins were dialized against 50 mM pH 6.5
phosphate buffer and 1 mM CaCl,. The cell-associated
IslA was extracted from L. citreurn CW28 cells with 8 M
urea at 25°C for 1 h with occasional gentle shaking as
already described [31]. The extract was then dialyzed
against 50 mM pH 6.5 phosphate buffer, after centrifuga-
tion. With this procedure, IsIA was obtained in a highly
purified form. The purity of the enzyme and truncated
forms was verified by SDS-PAGE 8%.

FTF activity assay

Initial reaction rates of IslA and truncated versions were
measured at 30°C in 50 mM pH 6.5 phosphate buffer in
the presence of 293 mM sucrose and 1 mM CaCl,. The
activity was measured by following of the reducing power
released from sucrose by the 3,5-dinitrosalicylic acid
method (DNS). One activity unit (U) is defined as the
amount of enzyme that produces 1 pmol of glucose per
minute. Specific activity is reported as U/mg of protein.
The protein concentration was determined by the Brad-
ford method [39], using the Bio-Rad reagent and BSA as
standard. In a more specific assay, glucose and fructose
were analyzed by HPLC in a Waters instrument equipped
with a refraction index detector (Waters 410) and using a
high performance carbohydrate cartridge (Waters) at
35°C and acetonitrile:water 75:25 as eluent at a flow rate
of 1.4 mL/min.

Biochemical and enzymatic characterization of IslA and
truncated versions

IslA and truncated versions activity was assayed in the 20
to 40°C temperature range in 50 mM pH 6.5 phosphate
buffer and 1 mM CaCl,, while the effect of pH was deter-
mined in the 5.0 to 8.0 range in the same buffer. All the
experiments were performed in triplicates.

Kinetics properties were studied through initial rate of
reaction measurements carried out at pH 6.5 and 30°C in
sucrose solutions ranging from 14.6 to 584.8 mM and
containing 1 mM of CaCl, Samples of 50 pul were with-
drawn after addition of the enzyme at 3 min time intervals
and poured into 50 pl of DNS solution to stop the reac-
tion and perform the reducing power assay. The data was
processed using the Hills or the Michaelis-Menten equa-
tions. The transglycosylase and hydrolase activities of IslA
and truncated versions were determined from the glucose
and fructose concentrations measured by HPLC.

Ca?* jons binding

Ca?+ ions were depleted by addition of EDTA in amounts
that were found dependent on the protein structure, as
described in the results section. Accordingly, different con-
centrations of Ca2*ions were used to restore the activity.

Fructan characterization
Fructan was produced with all the enzymes forms at 30°C
in 50 mM pH 6.5 phosphate buffer containing 100 g/L
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sucrose and 1 mM CaCl,. The polymer was precipitated
with two volumes of ethanol, dialyzed against water,
lyophilized and analyzed by 13C NMR. Inulin MW was
analyzed by gel permeation chromatography in a Waters
600E HPLC system controller (Waters Corp. Milford, MA)
equipped with a refractive index detector (Waters 410),
using a serial set of Ultrahydrogel columns (UG 500 and
linear) at 35 °C with water as mobile phase at 0.9 mL/min.

Secondary and tertiary structure determination

Tertiary structure of the truncated forms was examined by
Trp fluorescence assays on a Perkin Elmer LS-55 spec-
trofluorimeter. The proteins were purified and filtered and
solutions prepared containing 0.018 mg/mL of IslA4;
0.02 mg/mL of IslA3 and IslA2; and 0.01 mg/mL of IslA.
The proteins were excited at 280 nm and the fluorescence
emission measured at 348 nm at 30°C. The secondary
structure of the truncated versions was determined by Cir-
cular Dichroism (CD) from solutions containing 5.04 pM
of IslA4 and IslA3 and 1.7 uM of IslA in 50 mM pH 6.5
phosphate buffer (CaCl, and/or EDTA were added accord-
ing to the case). The solutions were placed in quartz
cuvettes of 2 mm path length and CD spectra in the far UV
region (190-250 nm) recorded on a Jasco J-715 spec-
tropolarimeter at 25°C. All the spectra shown is the aver-
age of 3 scans recorded at a scanning rate of 20 nm/min.
Spectra were corrected by subtracting appropriate buffer
blanks and smoothed by noise reduction.

Cell wall anchoring assay

In order to demonstrate the role of the C-terminal domain
in binding to L. citreum CW28 cells, we first produced non
induced L. citreum CW28 cells in LM culture supple-
mented with glucose 2% (w/v) instead of sucrose, har-
vested at 5 ODy, ,,, by centrifugation and washed twice
with 50 mM pH 6.5 phosphate buffer. Cell protein was
measured by the Lowry method [40]. In a second step, 0.5
mg/ml of the purified proteins IslA and IslA3 (with and
without the C-terminal domain respectively but retaining
enzymatic activity) were incubated with 2.5 mg/ml final
concentration of non induced L. citreum CW28 cells for 12
h at 4°C with gentle shaking. Afterwards, cells were sepa-
rated by centrifugation at 4°C, 12000 g. The pellet was
washed three times with 50 mM pH 6.5 phosphate buffer,
and for both, supernatant and the pellet, the FTF activity
was determined and SDS-PAGE 8% gels were performed.
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