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Abstract

Background: Autosomal dominant optic atrophy (ADOA), a form of progressive bilateral
blindness due to loss of retinal ganglion cells and optic nerve deterioration, arises predominantly
from mutations in the nuclear gene for the mitochondrial GTPase, OPAI. OPAI localizes to
mitochondrial cristae in the inner membrane where electron transport chain complexes are
enriched. While OPAI has been characterized for its role in mitochondrial cristae structure and
organelle fusion, possible effects of OPAI on mitochondrial function have not been determined.

Results: Mitochondria from six ADOA patients bearing OPA| mutations and ten ADOA patients
with unidentified gene mutations were studied for respiratory capacity and electron transport
complex function. Results suggest that the nuclear DNA mutations that give rise to ADOA in our
patient population do not alter mitochondrial electron transport.

Conclusion: We conclude that the pathophysiology of ADOA likely stems from the role of OPAI
in mitochondrial structure or fusion and not from OPAI support of oxidative phosphorylation.

Background

Autosomal dominant optic atrophy (ADOA) is a progres-
sive form of bilateral blindness that shares the end-stage
clinical characteristics of retinal gangln cell (RGC) death
and optic nerve atrophy with the mitochondrial disease,
Leber's hereditary optic neuropathy (LHON) [1]. ADOA,
also referred to as Kjer's disease (OMIM 165500), has an
earlier onset than LHON, with patients presenting mainly
during childhood or adolescence. Unlike LHON, which
results from mutations in mitochondrial DNA (mtDNA)-
encoded complex I subunits, ADOA disease results prima-
rily from mutations in two nuclear genes, OPA1 at 3q28

and OPA4 at 18q12, and displays incomplete penetrance
and variable expressivity in families [2-7]. OPA1 muta-
tions are responsible for the majority of reported ADOA
cases and nearly half of the reported disease mutations
give rise to a truncated OPA1 protein [3]. OPA1 encodes a
960 amino acid mitochondrial dynamin-related GTPase
that resides in the inner membrane cristae and plays an
essential role in cristae structure and mitochondrial fusion
[8-16]. However, the relationship between these roles for
OPA1 and the relationship of either function to cellular
energy production remain to be elucidated.
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While OPA1 is critical for optic nerve function, the mech-
anism by which OPA1 mutations lead to blindness is
unknown [1]. A few studies have found ADOA patient
OPA1 defects to be associated with diminished ATP syn-
thesis and aberrant mitochondrial architecture at the tis-
sue and cellular level [17-19]. Since cellular structure and
nuclear gene expression differs between neurons and
most cell types used for analysis of ATP production in
ADOA, OPA1 mutations may reduce cellular ATP synthe-
sis by different molecular mechanisms in each cell type
[17]. Without an analysis of isolated mitochondria from
ADOA patients harboring OPA1 mutations, it remains
unclear whether the reduced ATP production in cells
arises from a biochemical defect in respiratory function or
is secondary to a frank disruption of mitochondrial mem-
brane morphology or mitochondrial biogenesis
[17,20,21]. Due to its location in the cristae of the inner
membrane, the OPA1 protein may support OXPHOS
through interactions with electron transport chain com-
plexes, by maintaining a membrane topology conducive
to efficient electron transfer, or by facilitating the fusion of
mitochondria into networks that are more responsive to
cellular ATP demand. Haploinsufficiency for OPA1 has
been suggested as the primary cause of heterozygote phe-
notypes based on the finding that a downregulation of
OPAT1 results in cristae disorganization and mitochondrial
aggregation, however the level of OPA1 found in some
ADOA patient cell lysates was near that of controls
[19,20,22,23]. In our study, we examined mitochondria
from patients harboring ADOA OPA1 mutations to deter-
mine whether the protein defects alter mitochondrial res-
piration.

In a previous publication, we reported seven novel patho-
logical OPA1 mutations in a cohort of 30 patients diag-
nosed with ADOA [24]. Lymphoblast cell lines were
established from blood samples taken from six of the
seven patients bearing novel OPAl1 disease variants
(referred to as OPAl-positive) and from ten ADOA
patients without OPA1 mutations (referred to as OPA1-
negative) (see Table 1). From these patients, we have iso-

Table I: OPAI mutations in OPAI-positive ADOA patients
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lated and biochemically characterized lymphoblast mito-
chondria, as was done previously for LHON patients with
primary complex I mutations, to determine whether the
nuclear DNA mutations give rise to ADOA through defects
in OXPHOS [25]. Our findings suggest that OPA1 does
not directly contribute to mitochondrial OXPHOS, as nei-
ther respiratory capacity nor OXPHOS specific enzyme
activity, were affected by the deleterious OPA1 variants.
Likewise, mitochondrial function was not diminished in
OPA1-negative ADOA lymphoblasts. Based on these find-
ings, we conclude that OPA1 mutations that result in
ADOA have indirect effects on ATP production that may
correlate with OPA1 function in mitochondrial cristae
structure or organelle fusion in RGCs.

Methods

Patient Cell Lines

All patients in this study were examined by two experi-
enced neuro-ophthalmologists (NJN, VB) and had clinical
symptoms, age of onset, and family histories typical for
ADOA, as described previously [24]. Informed consent
was obtained from each study participant using an institu-
tional IRB approved consent form. OPAI1 exons and
intron/exon junctions were sequenced for all patients and
a complete characterization of the ADOA-associated
OPA1 variants have been described in detail in [24]. None
harbored known LHON mtDNA mutations. Lymphoblast
cell lines were established by EBV transformation of leu-
kocytes isolated from whole blood by Ficoll-Hypaque gra-
dient [25]. Lymphoblastoid cell lines were maintained in
RPMI 1640 medium (Bio-Whitaker, Walkersville, MD)
supplemented with 15% (v/v) heat-inactivated fetal
bovine serum (Life Technologies, Inc., Grand Isle, NY).

Mitochondrial Isolation, Polarography, and Enzymology

All procedures for mitochondrial isolation, polarographic
respiration analysis and respiratory chain enzymology
have been previously described [25-27]. Briefly, for respi-
ration studies, electrons were entered at either complex I
(using either malate + pyruvate or glutamate + malate as
substrate) or complex II (using succinate as the substrate)

Patient Gene Mutation Exon Protein Change Protein Domain
P2a c239A>G 2 Tyr80Cys Mt targeting
c.2883A>CP 28 Stop96 1 Tyr Coiled-coiled

P3 c.2522A>G 25 Tyr841Cys C-terminal

P4 c.2780T>A 27 Leu927Stopc Coiled-coil

Pé6 c.1654delT 17 Trp552fsc Dynamin

P7 c.1929delC 20 Thré43fsc Dynamin

P8 c.2708delTTAG 27 Val903fsc Coiled-coil
aCompound heterozygote.
bResults in a 3 amino acid C-terminal extension.
“Mutations in OPA[ result in protein truncation at the amino acid shown.
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using intact whole mitochondria. Two polarographic runs
were performed for each substrate and each run included
two additions of ADP (125 nmole for complex I substrates
and 75 nmole for succinate) to stimulate state Il and sub-
sequent state IV respiration. Each run was concluded by
the addition of the OXPHOS uncoupler, 2,4-dinitrophe-
nol (DNP) to assess maximal respiration rates. All runs
were performed with 250 - 500 pg of mitochondrial pro-
tein.

OXPHOS specific enzyme activities in submitochondrial
particles were measured using a Varian Cary 300 Bio UV/
Vis spectrophotometer [25-27]. Briefly, mitochondrial
protein was prepared by sonication of isolated organelles.
Complex I activity was monitored in triplicate samples as
the reduction of 10 uM decylubiquinone at 272 nm by 30
pg of mitochondrial protein with 30 uM NADH. Using
this method, 90-100% of the total complex I activity is
sensitive to rotenone inhibition. Complex III and com-
plex IV activities were determined at 550 nm in duplicate
samples containing 7.5 pg mitochondrial protein and
appropriate substrates. Complex III activity was assayed as
the antimycin A-sensitive oxidation of reduced decylubig-
uinone by cytochrome c. Using this method, complex III
activity is 75 - 100% antimycin A sensitive. Complex IV
activity was determined by the cyanide-sensitive oxida-
tion of cytochrome c. Citrate synthase was assayed at 412
nm in duplicate samples containing 15 pg of mitochon-
drial protein.

For all samples, mitochondrial protein concentration was
determined using the modified Lowry assay and mito-
chondrial preparations were not used for biochemical
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analysis if the protein concentration was below 2 mg/ml.
Further, all mitochondrial preparations exhibited a respi-
ratory control ratio of > 4, indicative of a high quality
mitochondrial isolation as evidenced by well-coupled
mitochondria upon polarographic analysis (data not
shown) [25,28]. Statistical significance for all data (p <
0.05) was determined by the Mann-Whitney unpaired,
two-tailed test using Instat Graphpad Software [25,29].

Results

To assess mitochondrial function in ADOA patients, we
determined mitochondrial respiratory function and respi-
ratory chain enzyme specific activities in both OPA1-pos-
itive and OPA1-negative ADOA patients. For each patient
cohort, both complex I-linked (malate + pyruvate and
glutamate + malate substrates) and complex II-linked
(succinate) maximal (state III) respiration rates were not
significantly diminished relative to the control group
(Table 2). For OPA1-positive patient mitochondria, only
slight reductions in all complex I rates (ranging from
1-12%) were found when comparing the average rates
from both complex I-linked substrates with the controls.
These data suggest that OPA1 has no direct role in
OXPHOS, however individual variation in OXPHOS
exists within the OPA1-positive ADOA patient mitochon-
dria. For example, mitochondria from patient P3 showed
elevations in all respiration rates when entering electrons
at complex I and complex II, and P6 mitochondria dis-
played a notable decrease in rates with all substrates.
Although the data for individual patient mitochondria are
insignificant due to sample size, results for P3 and P6
mutations suggest that further study may be warranted.
For OPAl-negative patients, respiratory rate reductions

Table 2: Polarographic analysis of ADOA patient and control mitochondria

Mean respiration rates and ADP/O with substrates indicated?
nmol O/min/mg mitochondrial protein

Malate + Pyruvate Glutamate + Malate Succinate
m v uc m v uc m [\'4 uc

bOPAI+ (n = 6)

P2 211 43 258 235 52 270 313 65 349

P3 349 58 442 398 50 474 537 97 653

P4 290 41 397 310 36 392 393 76 468

Pé6 173 36 280 170 31 276 276 54 372

P7 281 48 362 310 4| 348 356 73 403

P8 250 44 322 280 35 338 310 57 391
Mean + SD 259 + 62 45+8 344 £ 70 284 + 77 41 £ 9 350 £ 76 364 + 94 70t 16 439+ 112
bOPAI- (n = 10)
Mean * SD 230 + 64 38+ 13 309 £ 99 270 + 88 39+ 18 312 £ 145 301 £83 58 + 22 356 + 124
Control (n = 10)
Mean % SD 300 £ 37 49 + 12 370 £ 73 312 +£38 45 + 12 328 £ 98 376 £ 66 66+ 18 42| £ 63
9Abbreviations used for respiratory rate data are lll, state lll rate; IV, state IV rate; and UC, uncoupled rate.
bAbbreviations used for patient genetics are OPA 1+, OPA|-positive patients and OPA|-,0PA | -negative patients
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were observed with complex I-linked substrates (ranging
from 11-18%) and succinate (ranging from 15-20%),
however these differences from the controls were not sta-
tistically significant. RCR values from polarography anal-
ysis revealed that all patient and control mitochondria
were well-coupled, and ADP/O ratios showed no statisti-
cal difference between patients and controls for both com-
plex I and complex II-linked substrates (data not shown).
Overall, we could not detect respiration defects in OPA1-
positive or -negative ADOA patient mitochondria.

Mitochondrial respiratory chain enzyme specific activities
were assayed in submitochondrial particles for both
patient groups (Table 3). Complexes I, III, IV, and the
mitochondrial matrix enzyme citrate synthase (CS) were
studied, with CS activity used for normalization of the res-
piratory chain enzyme activities. We found that complex I
activity was reduced by 10.6% in OPAI-positive patients
relative to controls, but this reduction was not statistically
significant. The apparent reduction in complex I activity
also was evident when complex I activities were normal-
ized to CS activities, as OPA1-positive patients had a com-
plex 1/CS ratio of 0.11 while controls demonstrated a
normalized ratio of 0.13. Thus, normalized complex I
activities were still reduced in OPA1-positive patients, but
by a modest 15%. Given the variability in the raw and CS
normalized complex I activities, it remains possible that
individual deleterious OPA1 mutations may impact
OXPHOS and a careful analysis of a greater population of
patients with of these mutations is needed. In OPA1-neg-
ative patients, complex I activity was essentially identical
to controls (Table 3). For all patients, complex III and IV
activities were very similar to the control activities.

For our OPA1-positive patients, two (P2 and P3) harbored
pathogenic missense mutations and four (P4, P6-8) con-
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tained protein-truncating variants (Table 1). Since the
protein terminating mutations may be considered poten-
tially more severe than the missense mutations, we exam-
ined our data to see if this was the case from a functional
perspective. Although our sample size is low, we found no
significant differences between OPAI-positive patients
with missense or frameshift/nonsense mutations. Further,
patient P2 is a compound heterozygote, harboring both
the c.239A>G exon 2 missense mutation and the
€.2883A>C exon 28 variant that changes the OPA1 stop
codon to a tyrosine and extends the OPA1 polypeptide 3
additional amino acids. As indicated in Tables 2 and 3 for
OPA1-positive patient P2, both respiration and specific
enzyme activities do not differ significantly when com-
pared to the other OPA1-positive patients, suggesting that
the combined presence of these two deleterious OPA1 var-
iants does not cause greater functional impairment.

Discussion

The analysis of six ADOA patient lymphoblastoid cell
lines with mutations in the nuclear gene OPA1 indicates
that OPA1 has no direct role in mitochondrial respiratory
chain function. These data represent the first report on in
vitro OXPHOS function using isolated mitochondria from
patients with ADOA. No significant effects on respiratory
capacity or specific electron transport chain enzyme activ-
ity were observed in mitochondria from OPA1-positive or
OPA1l-negative ADOA patients suggesting that ADOA-
related gene defects alter mitochondrial function prima-
rily by disruption of inner mitochondrial membrane
topography. This is intriguing as the bilateral vision loss
experienced by ADOA patients is clinically similar to that
observed in LHON patients harboring primary complex I
mtDNA variants that directly impair mitochondrial bio-
chemistry [25,28]. Overall, it appears that RGC function is

Table 3: Specific enzyme analysis of ADOA patient and control mitochondria

Mean specific enzyme activities

nmol/min/mg mitochondrial protein

Complex | Complex Il Complex IV CSa
aOPAIl+ (n = 6)
P2 82 1076 884 1410
P3 274 976 568 2074
P4 294 928 1005 1693
Pé6 86 1313 970 918
P7 52 1078 974 846
P8 122 845 828 1018
Mean + SD 152 + 105 1036 + 162 872 % 162 1327 + 488
aOPAI- (n = 10)
Mean + SD 190 £+ 144 945 + 174 810 + 204 1154 £ 650
Control (n = 10)
Mean + SD 170 + 64 886 + 179 893 + 271 1304 + 364
dAbbreviations used above are CS, citrate synthase, OPA|+, OPA|[-positive patients, and OPAI-, OPA[-negative patients
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sensitive to different mechanisms of mitochondrial per-
turbation.

The study of OPA1 in the physiological context of ADOA
is limited by the inability to culture patient RGCs. Similar
to previous studies of LHON complex I mutations, our
study of mitochondrial respiratory capacity of isolated
ADOA patient organelles was an attempt to elucidate the
pathological role of OPA1 at the biochemical level and
enhance knowledge gained through several human cell
models [17-19]. OPA1 is expressed as eight, tissue-specific
transcripts resulting from alternative splicing in the gene
region encompassing exons 4 through 5b [8,13]. OPA1
transcripts 1, 4 and 7 expressed in retina are also found in
leukocytes, therefore the results obtained here with
patient lymphoblast mitochondria should reflect any
mitochondrial impairments due to the ADOA OPAI
mutations affecting protein isoforms in RGCs [8]. The
protein products of OPA1 transcripts 1, 2, 4 and 7 support
mitochondrial fusion activity to a greater extent than
other OPA1 isoforms [30]. The OPA1 protein encoded by
each transcript is cleaved by proteases within the mito-
chondrial matrix at sequences translated from exons 5 and
5b [13,30,31]. This activity removes the N-terminal,
membrane-anchored region of the full-length protein
generating one or more short, matrix isoforms. Both the
long and short OPA1 gene products are required for mito-
chondrial fusion activity, and proteolysis is in part stimu-
lated by loss of mitochondrial membrane potential
[13,30].

The ADOA OPA1 mutations in our patient lymphoblasts
alter key functional domains that are present in all OPA1
proteins and lie outside of the proteolytic sites of the
OPAL1 protein (Table 1). The mutations would affect both
long and short isoforms and should disrupt OPA1-medi-
ated networking of mitochondria that may be required for
the high level of ATP production in RGCs [3,8-
10,12,13,15,16,19,30]. Surprisingly, none of the OPA1
mutations evaluated here diminished OXPHOS to a sig-
nificant extent, even though the ¢.2708delTTAG mutation
has been associated with decreased ATP synthesis in
fibroblasts and OPA1 appears to interact with AIF, a sta-
bility factor for electron transport chain complex I [19].
Although ADOA shares many clinical hallmarks of
LHON, defects in OPA1 do not compromise mitochon-
drial respiratory capacity. These results suggest that OPA1
may not be required for maintaining the electron trans-
port chain for OXPHOS and may function primarily at the
level of mitochondrial morphology within RGCs. Indeed,
OPA1 function in the control of morphology may require
alterations in membrane potential or cellular signals not
induced in the context of cell culture, thereby limiting our
ability to observe OPA1 effects in isolated mitochondria.

http://www.biomedcentral.com/1471-2091/9/22

A recent report by Schimpf et al. suggests that OPA1 muta-
tions that would produce large C-terminal truncations in
OPA1 protein may lead to message degradation by non-
sense mediated mRNA decay (NMD) [32,33]. The net
effect of NMD would be expression of protein only from
the functional OPA1 allele, thereby creating a haploinsuf-
ficiency for OPA1. This mechanism may be the underlying
cause of RGC death and disease in our OPAI-positive
ADOA patients with two exceptions, patient P2 and
patient P3. Patient P2 is a compound heterozygote har-
boring two mutant alleles, a mitochondrial targeting
sequence mutation in exon 2 and a Stop961Tyr in exon
28, which extends the C-terminus by 3 amino acids. The
exon 2 mutation should prevent mitochondrial localiza-
tion of the gene product, resulting in a downregulation of
functional protein expression and haploinsufficiency. The
three amino acid extension of OPA1 is not expected to
alter protein function, however a small effect on protein
activity may be detrimental in the context of diminished
levels mitochondrial OPA1l. The OPAI genotype of
patient P3 is more intriguing, as the single base change
results in an amino acid substitution, Tyr841Cys, that lies
outside of known functional domains in the C-terminal
region. The Tyr841Cys OPA1 protein should be expressed
and targeted to the mitochondria where it conceivably
may compete in molecular interactions with both the
long and short isoforms of protein expressed from the
normal allele. While no significance was found for the
average mitochondrial respiration and specific activity
data for the ADOA OPA1-positive mitochondria com-
pared to controls, mitochondria from P3 lymphoblasts
displayed notably higher respiration, slightly elevated
complex [ activity, and substantially lower complex IV
activity. This suggests that the Tyr841 may mediate regula-
tory or stabilizing interactions with complexes I and IV
within the mitochondrial membrane [18,19,34]. A more
detailed analysis of the C-terminus of OPA1 may uncover
critical interactions with the electron transport chain in
the cristae of the mitochondria.

Conclusion

From this study we conclude that OPAI is not directly
involved in maintaining electron transport efficiency for
OXPHOS. The OPAl mutations causing ADOA most
likely result in a cellular haploinsufficiency for OPA1 pro-
tein in mitochondrial network formation and total cellu-
lar energy production. The results obtained for
mitochondria bearing an OPA1 protein with a Tyr841Cys
change in the C-terminus indicate that this domain of
OPA1 could be responsible for stabilizing electron trans-
port chain complexes and suggest that functional interac-
tions for OPA1 may exist within the inner membrane.
However, the apparent cause of ADOA pathology is the
loss of OPA1 control of mitochondrial morphology in
RGCs.
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