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Abstract
Background: Evidence demonstrates that exogenously administered nitric oxide (NO) can induce
insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO
donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO) on the
early events in insulin signaling in rat skeletal myocytes.

Results: Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP
or GSNO (25 ng/ml) in the presence or absence of glucose (25 mM) and insulin (100 nM). Cellular
insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while
serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the
insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-
(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO).

Conclusion: These data suggest that NO is a potent modulator of insulin-mediated signal
transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

Background
Nitric oxide (NO) is an important bioactive molecule that
regulates a variety of normal physiological functions and
is involved in the mediation of several pathologic proc-
esses [1,2]. It is a short-lived free radical gas and endog-
enous signalling molecule produced by the intracellular
enzyme NO synthase [2]. NO drugs are useful in the treat-
ment of several disorders, and are generally indicated in
cases of NO insufficiency. Previously, we have established
that exogenous NO (from NO-releasing drugs) inhibited
in vivo insulin binding to its receptor on erythrocytes and
mononuclear leukocytes [3], and in vitro glucose uptake
in skeletal muscle cells [4] and adipocytes (unpublished
results). Skeletal muscle is an important target for insulin

action and insulin resistance here is a characteristic feature
of type 2 diabetes [5].

Insulin is the principal hormone controlling blood glu-
cose and acts by stimulating glucose influx and metabo-
lism in muscle and adipocytes and inhibiting
gluconeogenesis by the liver [6]. Insulin action is medi-
ated through the insulin receptor, a transmembrane glyc-
oprotein with intrinsic protein tyrosine kinase activity [6].
The level of tyrosine kinase reflects the serum concentra-
tion of insulin and appears to mediate the insulin
response through tyrosine phosphorylation of the recep-
tor itself and substrates like insulin receptor substrate
(IRS)-1 [7-9]. Phosphorylation of IRS-1 on multiple tyro-
sine residues creates an active signalling complex by

Published: 27 May 2006

BMC Biochemistry 2006, 7:17 doi:10.1186/1471-2091-7-17

Received: 14 February 2006
Accepted: 27 May 2006

This article is available from: http://www.biomedcentral.com/1471-2091/7/17

© 2006 Badal et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16729893
http://www.biomedcentral.com/1471-2091/7/17
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Biochemistry 2006, 7:17 http://www.biomedcentral.com/1471-2091/7/17
recruiting various proteins, including phosphatidyl 3
kinase (PI3K), Grb2, SHP2, among others [10,11]. Dys-
regulation of the insulin receptor and IRS-1 proteins are
usually associated with type 2 diabetes [12,13], occa-
sioned by proteasome-mediated degradation [14,15],
phosphatase-mediated dephosphorylation [16,17] or
kinase mediated serine/threonine phosphorylation [18].
Our current objective was to characterize the in vitro effects
of exogenous NO generated by S-nitroso-N-acetylpeni-
cillamine (SNAP) and S-nitrosoglutathione (GSNO) on
the cellular levels of insulin receptor-β (IR-β), and phos-
phorylated tyrosine and serine residues in isolated rat
skeletal myocytes.

Results
Nitric oxide released from drugs
Figure 1 shows the concentration-dependent increase in
nitric oxide (measured as nitrite) released from SNAP and
GSNO in aqueous solution. In all cases there was a grad-
ual increase in NO released, with a greater amount of NO
being released from drugs at the higher concentration.
Carboxy-PTIO, when added either at the start of the exper-
iment or after 30 min resulted in a sharp decline in the
amount of NO released from either drug (fig. 2).

Effect of NO released from SNAP and GSNO on IR-β 
expression
Figure 3 illustrates the inhibitory effects of NO released
from SNAP and GSNO on IR-β expression in isolated rat
skeletal myocytes. Incubation with SNAP significantly
decreased expression of IR-β compared to the insulin-
stimulated control by 74 – 99 % (p < 0.01). Similar results
were obtained for GSNO; however, these reductions were
not as dramatic, but were of the order of the unstimulated
negative control. For both drugs, there was a slight
increase in the expression of IR-β in cells treated with the
NO donor and insulin when compared to those treated
with the NO donor alone (p > 0.05); in the case of GSNO,
the increase approached significance.

Effect of NO released from SNAP and GSNO on tyrosine 
phosphorylation of IRS-1
Tyrosine phosphorylation of IRS-1 was significantly
reduced in the presence of SNAP and GSNO (fig. 4). Incu-
bation with SNAP or GSNO significantly reduced the lev-
els of IRS-1 pY in these cells compared to the insulin-
stimulated control (p < 0.01). There was a 20% increase in
the level of tyrosine phosphorylation in the presence of
insulin in cells treated with either drug (p < 0.05). How-
ever, there was no difference between the drugs whether
insulin was present or absent.

Effect of NO released from SNAP and GSNO on serine 
phosphorylation in IRS-1
Figure 5 shows the effect of SNAP and GSNO on serine
phosphorylation in IRS-1. Unlike the trends observed for
tyrosine phosphorylation, serine phosphorylation was
significantly increased in the presence of both drugs,
whether insulin was present or not (p < 0.05). GSNO was
significantly more effective than SNAP in increasing serine
phosphorylation in the absence or presence of insulin.

We tested whether the NO scavenger, carboxy-PTIO was
able to reverse the effect of NO-mediated reduction in
expression of IR-β, and extent of tyrosine and serine phos-
phorylation in the skeletal myocytes. We found a near
normal expression of IR-β in myocytes co-treated with car-
boxy-PTIO and SNAP or GSNO in the presence of insulin
(fig. 6A). These were not significantly different from the
respective controls with insulin (p > 0.3). Similar trends
were observed for tyrosine and serine phosphorylation
when the cells were exposed to the drugs in the presence
of the NO scavenger (fig. 6B and 6C).

Discussion
The present study clearly demonstrates that exogenously
administered nitric oxide reduced the expression of the
insulin receptor β subunit and the levels of tyrosine phos-
phorylation while increasing serine phosphorylation in
rat skeletal myocytes. These effects are expected to signifi-

Nitric oxide (NO) released from (A) SNAP and (B) GSNO at 25 and 50 ng/mlFigure 1
Nitric oxide (NO) released from (A) SNAP and (B) GSNO at 
25 and 50 ng/ml. Values are expressed as means ± SEM; * p < 
0.05 vs the drug at 25 ng/ml.
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cantly impair the insulin-mediated signal transduction
pathway leading to glucose uptake and metabolism, and
they confirm that pathophysiologically relevant concen-
trations of NO are able to affect several points in the met-
abolic pathway mediated by insulin. We found that SNAP
and GSNO release NO in a quantitative manner, and in
the absence of a quenching agent, produce quantities of
NO which can diffuse across the cell membranes and dis-
rupt normal cellular processes. There are two possible
modes for the release of NO from SNAP and GSNO in in
vitro systems. First, decomposition of nitrosothiols (RS-
NOs) can be catalyzed by intrinsic copper or iron ions
forming the respective thiol and NO [19,20]. Second,
enzymatic NO release from RS-NOs can occur at the cell
surface [21,22], forming one electron reduction of RS-
NOs and resulting in the release of a neutral NO molecule
[23]. The latter appears to be the more efficient process of

RS-NO decomposition, and because SNAP generates
more NO than GSNO [24,25], it is expected to have a
greater overall effect than GSNO.

In this study, we were able to completely abrogate the del-
eterious effects of both drugs with the NO scavenger,
which suggests that the effects of SNAP and GSNO were
related to the generation of NO and not to a non-specific
effect of the donors. Further, these results suggest that the
effects of NO impairment might be reversible if treated
early, and before the pathologic sequelae associated with
diabetes is evidenced.

Insulin action is initiated through its binding to the cell-
surface receptor, initiating a series of signal transduction
reactions, which stimulate various effectors to produce its
physiological effects. Therefore, impairment of insulin

Nitric oxide (NO) released from (A and C) SNAP and (B and D) GSNO at 25 and 50 ng/ml in the presence of the NO-scaven-ger, carboxy-PTIO, added at time 0 min (A and B) and after 30 min (C and D)Figure 2
Nitric oxide (NO) released from (A and C) SNAP and (B and D) GSNO at 25 and 50 ng/ml in the presence of the NO-scaven-
ger, carboxy-PTIO, added at time 0 min (A and B) and after 30 min (C and D).
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signal transduction results in attenuation of insulin action
and leads to insulin resistance resulting in type 2 diabetes
mellitus. Because the molecular mechanisms of insulin
resistance are still being elucidated, it is indispensable to
establish in vitro models of basal and insulin-mediated
signal transduction to clarify these mechanisms and sug-
gest treatments where appropriate.

Skeletal muscle is responsible for about 75% of whole
body glucose metabolism, and insulin resistance is a char-
acteristic feature of individuals with type 2 diabetes melli-
tus [26]. A number of intracellular defects in insulin
action in muscle have been described, including
decreased glucose transport [27,28] and glucose phospho-
rylation [29] and diminished glycogen synthase activity
[30]. A similar effect is observed in rodent model systems
[31,32]. In this study we noted that acute treatment of
skeletal myocytes by either GSNO or SNAP resulted in sig-
nificantly reduced content of available IR-β for participat-
ing in insulin-mediate signal transduction. This could be
a possible explanation for the decrease in insulin binding
and insulin receptor sites observed in mononuclear leuko-
cytes and erythocytes treated with these NO donors [3].
Further, recent findings highlight the involvement of

exogenous NO in S-nitrosation of IR-β in isolated rat mus-
cle, with the associated reduction in insulin-induced insu-
lin receptor autophosphorylation and tyrosine kinase
activity [33]. While these authors found the reduction
after chronic exposure to GSNO, we found similar reduc-
tions in IR-β expression after acute exposure, which
strongly suggests that the reduction observed, might not
be due to S-nitrosation. This acute reduction in expression
is expected to be associated with a marked reduction in
insulin binding and signalling, which would translate
into reduced glucose transport and glycogen storage in
isolated muscle treated with the NO donors [4]. We noted
an additive effect of the drugs on IR-β expression in the
presence of insulin, although the levels of expression were
not significantly different from the untreated controls.
While this increase might have not been expected, it has
been previously reported in relation to glucose uptake in
the presence of NO donors and insulin [34].

Prior to the publication by Carvalho-Filho and co-workers
[33], the postulated mechanisms for insulin resistance
involved either increased phosphotyrosine phosphatase
activity (effectively reduced tyrosine phosphorylation) or
increased serine phosphorylation of IRS proteins [16,18],

The effects of NO donors on tyrosine phosphorylation (pY) in rat skeletal myocytesFigure 4
The effects of NO donors on tyrosine phosphorylation (pY) 
in rat skeletal myocytes. Rat skeletal myocytes were treated 
with 25 ng/ml of SNAP or GSNO, in the presence the indi-
cated concentrations of insulin, with or without 25 mg/ml 
glucose (Glu). Values are expressed as means ± SEM; * p < 
0.05 vs the insulin-stimulated control (100 mM insulin). One 
representative blot is shown.
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The effects of NO donors on content of IR-β in rat skeletal myocytesFigure 3
The effects of NO donors on content of IR-β in rat skeletal 
myocytes. Rat myocytes were treated with 25 ng/ml of SNAP 
or GSNO, in the presence the indicated concentrations of 
insulin, with or without 25 mg/ml glucose (Glu). Values are 
expressed as means ± SEM; * p < 0.05 vs the insulin-stimu-
lated control (100 mM insulin). One representative blot is 
shown.
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and only increased or preferential serine phosphorylation
of IRS proteins had been linked to insulin resistance medi-
ated by their degradation [35,36]. It is well established
that changes in the level of phosphorylation at any of the
possible sites on these proteins could potentially alter
their ability to bind and activate the various downstream
effectors in the insulin-mediated signal transduction path-
way [6]. It is our view that S-nitrosation is secondary to
serine phosphorylation as the means whereby NO medi-
ates insulin resistance in skeletal muscle. This is based on
the fact that IRS degradation effected by S-nitrosation
occurs only after chronic exposure to the NO donor [33],
unlike proteasome-mediated degradation subsequent to
serine phosphorylation [37]. In this study we found that
the NO donors caused decreased tyrosine and increased
serine phosphorylation in IRS-1 in skeletal myocytes.
Although the reduction in tyrosine phosphorylation may
be due to preferentially serine phosphorylation in these
molecules, we cannot rule out the possibility that tyrosine
nitration may also be occurring and be contributing to the
NO-mediated insulin resistance in these cells. Further,
while a reduction in tyrosine phosphorylation in IRS-1
per se does not reduce IRS-1 content [38], it will result in
insulin resistance in skeletal muscle. Because skeletal mus-

cle is the largest insulin-sensitive organ in humans, NO-
induced insulin resistance in this tissue will have a major
impact on whole body glucose homeostasis, especially in
patients who are obese or need to take NO drugs for pro-
longed periods. An equally plausible explanation for the
reduced tyrosine phosphorylation in IRS-1 could be due
to the lower amount of insulin receptor that is being
expressed, due to the action of NO.

Serine phosphorylation of IRS proteins has been estab-
lished a means to terminate insulin action. However, this
has been found to commence after tyrosine phosphoryla-
tion of IRS proteins which trigger insulin signalling [36],
based on their finding that phosphorylation of serine 408
was increased after insulin treatment, and was sensitive to
wortmanin (suggesting that the kinase is a downstream

The effects of a NO scavenger, carboxy-PTIO and NO donors on content of IR-β (A), tyrosine phosphorylation (B) and serine phosphorylation (C) in rat skeletal myocytesFigure 6
The effects of a NO scavenger, carboxy-PTIO and NO 
donors on content of IR-β (A), tyrosine phosphorylation (B) 
and serine phosphorylation (C) in rat skeletal myocytes. Rat 
skeletal myocytes were treated with the NO-scavenger, car-
boxy-PTIO (0.1 µM) with 25 mg/ml of GSNO or SNAP in the 
presence the indicated concentrations of insulin, with or 
without 25 mg/ml glucose (Glu). Values are expressed as 
means ± SEM; * p < 0.05 vs the insulin-stimulated control 
(100 mM insulin).
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The effects of NO donors on serine phosphorylation (pS) in rat skeletal myocytesFigure 5
The effects of NO donors on serine phosphorylation (pS) in 
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with 25 ng/ml SNAP or GSNO, in the presence the indicated 
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effector of PI3-K). In addition to the fact that the phos-
phorylation of serine residues within IRS proteins marks
them for degradation, there is further evidence that other
processes may be involved. For example, serine phospho-
rylation can induce the dissociation of IRS proteins from
the insulin receptor [39], or hinder tyrosine phosphoryla-
tion sites [40], or release the IRS proteins from intracellu-
lar complexes that maintain them in close proximity to
the receptor [41], or turn IRS proteins into inhibitors of
the IR kinase [18]. Therefore, it is possible that multiple
mechanisms can contribute to insulin resistance and thus
impair insulin-mediated signal transduction, and reversal
of one of them can improve insulin action, as have been
previously reported [16,18].

It is widely believed that phosphorylation of a single ser-
ine residue in IRS-1 might not be sufficient to inhibit tyro-
sine phosphorylation of IRS-1 and uncouple IR-IRS
complexes, although it could be a target fro phosphoryla-
tion by IRS kinases activated only by selective inducers of
insulin resistance. Some of these serine residues phospho-
rylated are catalyzed by a number of kinases, which may
in fact be activated by insulin [42-48], which might
explain our observations that there was an additive effect
of the drugs on serine phosphorylation in the presence of
insulin.

Conclusion
From the results presented herein, it is clear that NO
released from the NO donors has a negative effect on IR-β
expression and tyrosine phosphorylation of IRS-1 and a
positive effect on serine phosphorylation of IRS-1 in rat
skeletal myocytes. These effects would have significant
bearing on initial transduction and the availability of
downstream effectors of the insulin signal. Taken
together, these results indicate a direct role of NO in the
impairment of insulin-mediated signal transduction in
skeletal muscle, and possibly in the pathogenesis of type
2 diabetes mellitus.

Methods
Chemicals and reagents
Anti-insulin receptor-β (anti-IR-β), anti-IRS-1, anti-phos-
photyrosine (anti-pY), anti-phosphoserine (anti-pS) and
associated alkaline phosphatase conjugates were obtained
from Chemicon International Inc. (Temecula, CA, USA).
All biochemicals and enzymes were of molecular biology
grade and were purchased from commercial suppliers.

Preparation of dissociated cells
Female and male Sprague-Dawley rats (6 – 8 weeks old
weighing 200 – 300 g) were housed at the University of
the West Indies Preclinical Animal House, Mona, Jamaica,
with free access to water and food. Food was withdrawn
on the evening prior to experimentation and rats were

euthanatized using diethyl ether. The Ethics Committee of
the University of the West Indies/University Hospital of
the West Indies approved the experiments involving ani-
mals and method of euthanasia.

Approximately 5–10 g of skeletal muscle tissue were asep-
tically removed, washed 2–3 times with sterile phosphate
buffered saline (PBS, pH 7.2) and minced using a sterile
scalpel. Skeletal myocytes were isolated using a modifica-
tion of the method by Freshney [49]. Briefly, minced tis-
sue was incubated in Krebs' Ringer Bicarbonate (KRB)
containing 200 U/ml collagenase, 10% bovine serum
albumin (BSA) and 1x penicillin/streptomycin/neomycin
(PSN) (Sigma, St. Louis, MO, USA) at 37°C in a humidi-
fied incubator containing 95% air and 5% CO2. Dissoci-
ated cells were collected by centrifugation at 100 rpm for
5 min, washed twice in 5 ml KRB buffer containing 2.5
mM glucose and 2% BSA and resuspended in 20–30 ml
KRB without any additives. Viability of dissociated cells
was verified using Trypan blue.

Treatments of dissociated cells
After an incubation period of 30 min, cells (1 ml packed
cells/1.5 ml Eppendorf tube) were treated with 25 ng/ml
SNAP or GSNO (Sigma), in the absence or presence of
100 nM insulin at 37°C for 1 hr. Nitric oxide released
from the drugs was determined as nitrite using the Greiss
reagent (BDH, Poole, UK). Experiments with 25 ng/ml
GSNO and SNAP were repeated in the presence of 0.1 µM
of the NO scavenger, 2-(4-carboxyphenyl)-4, 4, 5, 5-
tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO;
Sigma).

Immunoblot analysis
Cells were washed and solubilized in 750 µl of lysis buffer
(20 mM HEPES, 150 mM NaCl, 1 % Triton X-100, 1 mM
aprotinin, 0.2 mM leupeptin, 1 mM phenymethylsulfonyl
fluoride [PMSF], 1 mM sodium orthovanadate) for 30
min at 4°C. Detergent-insoluble material was sedimented
by centrifugation at 12,000 g for 10 min at 4°C. The pro-
tein content of cell lysates was determined using the Brad-
ford method [50]. Cell lysate proteins (30–50 µg) or 50 µg
of immunoprecipitated IRS-1 were vacuum blotted onto
poly(vinylidene difluoride) (PVDF) membrane using a
manifold apparatus (Scie-Plas, Warwickshire, UK).
Immunoprecipitation was performed by incubating the
lysates with anti-IRS-1 at 4°C for 3 h. Immune complexes
were collected with protein G agarose (Sigma) for 1.5 h at
4°C, washed, and solubilized in lysis buffer.

Membranes were analyzed using the Protein detector
Western Blot Kit BCIP/NBT System (Kirkegaard and Perry
Laboratories [KPL], Gaithersburg, MD, USA). After block-
ing, membranes were probed with anti-IR-β (1:500) for
lysates, or anti-pY (1:1000), or anti-pS (1:1000) antibod-
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ies for solubilized immunoprecipitates, according to the
manufacturer's recommendations. Chromogenic detec-
tion of the bound antibodies was done using secondary
antibodies conjugated to alkaline phosphatase, as
described by the manufacturer (KPL, Gaithersburg, MD,
USA). Densitometric analysis of the blots was carried out
using NIH Image J programme for PC [51].

Statistical analysis
Statistical analysis was performed using either unpaired
Student's t test or ANOVA (Fisher, multiple comparisons),
as applicable. Values are presented as means ± S.E.M. of
3–6 observations, and differences among means were
considered significant at p < 0.05.
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