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Abstract
Background: We and others have shown four distinct and presumably related effects of
mammalian proliferating cell nuclear antigen (PCNA) on DNA synthesis catalyzed by mammalian
DNA polymerase δ(pol δ). In the presence of homologous PCNA, pol δ exhibits 1) increased
absolute activity; 2) increased processivity of DNA synthesis; 3) stable binding of synthetic
oligonucleotide template-primers (t1/2 of the pol δ•PCNA•template-primer complex ≥2.5 h); and 4)
enhanced synthesis of DNA opposite and beyond template base lesions. This last effect is
potentially mutagenic in vivo. Biochemical studies performed in parallel with in vivo genetic analyses,
would represent an extremely powerful approach to investigate further, both DNA replication and
repair in eukaryotes.

Results: Drosophila PCNA, although highly similar in structure to mammalian PCNA (e.g., it is
>70% identical to human PCNA in amino acid sequence), can only substitute poorly for either calf
thymus or human PCNA (~10% as well) in affecting calf thymus pol δ. However, by mutating one
or only a few amino acids in the region of Drosophila PCNA thought to interact with pol δ, all four
effects can be enhanced dramatically.

Conclusions: Our results therefore suggest that all four above effects depend at least in part on
the PCNA-pol δ interaction. Moreover unlike mammals, Drosophila offers the potential for
immediate in vivo genetic analyses. Although it has proven difficult to obtain sufficient amounts of
homologous pol δ for parallel in vitro biochemical studies, by altering Drosophila PCNA using site-
directed mutagenesis as suggested by our results, in vitro biochemical studies may now be
performed using human and/or calf thymus pol δ preparations.

Background
Many Drosophila melanogaster homologs of the proteins
required for both DNA replication and repair have been
identified and in several cases purified to apparent homo-

geneity. These include DNA polymerase α holoenzyme
[1,2], DNA polymerase δ(pol δ) [2-4], replication protein
A (RP-A; [5]), replication factor C (RF-C; e.g., see [6-9])
and various origin recognition complex (ORC) subunits
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(see e.g., [10,11]). Moreover, complete replication of
DNA containing the SV40 origin of replication has been
reconstituted in vitro using purified SV40 T-antigen and
Drosophila cell-free extracts [7].

A protein about which much information has been
obtained is proliferating cell nuclear antigen (PCNA).
Drosophila PCNA was first identified both as a highly puri-
fied protein able to substitute, albeit poorly, for human
PCNA in a cell-free SV40 DNA replication system reconsti-
tuted from purified proteins [12] and by Yamaguchi et al.
[13] who used an oligonucleotide probe to detect the Dro-
sophila PCNA cDNA and gene, express the protein in E. coli
and deduce its complete amino acid sequence. Further
results indicated that in flies, PCNA was encoded by a sin-
gle gene located at position 56F5-15 on the right arm of
chromosome 2. This was subsequently identified as the
Drosophila mus209 locus [14]. Recently, a second Dro-
sophila PCNA gene of limited homology to the original
and of unknown biological function has also been found
[15].

Protocols have been established for purification of wild-
type human PCNA from tissue culture cells [16,17],
unmodified wild-type human PCNA after regulated
expression in E. coli [18] and NH2-terminally his-tagged
but otherwise wild-type human PCNA, also engineered
for bacterial expression [19]. All were comparably effec-
tive at stimulating mammalian pol δ. Similar protocols
have been developed for Drosophila PCNA and strategies
for site-directed mutagenesis have been devised and
implemented [20].

Recently, Zhang et al. [21] (see also [22]) as well as others
(e.g., see [23]) identified the interdomain connector loop
of PCNA (amino acids 119-133 of human PCNA) as cru-
cial for binding pol δ. Of note, relative to wild-type PCNA,
mutations of the molecule within this region such as
glutamine at position 125 changed to glutamic acid
(Q125E) promoted increased pol δ-processivity [21]. In
human PCNA, residues 123, 126, 127 and 128 were
defined as being essential for interaction with pol δ [21].
Comparison of human with Drosophila PCNA sequences
in this region indicated that of these four amino acids,
three (residues 126, 127 and 128) are identical. The
fourth, residue 123, is glutamine (Q123) in wild-type
Drosophila PCNA. The corresponding residue in human
PCNA is valine (V).

To investigate the role of the interdomain connector loop
of PCNA on the effects of PCNA on pol δ, we mutagenized
residues within this region of Drosophila PCNA so that
they more nearly resembled human amino acids. After
bacterial expression and purification, we tested the effects
of these site-specifically modified ("humanized") Dro-

sophila PCNA molecules on purified calf thymus pol δ
(two-subunit form; see [17,24]). Calf thymus and human
pol δ are highly similar in amino acid sequence [25-27]
and can, for our purposes, be used interchangeably.
"Humanization" of a single Drosophila PCNA residue,
conversion of Q123 to V (Q123V), conferred upon it,
enhanced ability to affect several properties of calf thymus
pol δ. More extensive mutagenesis, in which the entire
interdomain connector loop of Drosophila PCNA (amino
acids 119-133) was replaced by the corresponding human
residues, was still more effective at stimulation of calf thy-
mus pol δ, than either wild-type or Q123V Drosophila
PCNA. However, it was considerably less effective than
wild-type human PCNA at altering the properties of calf
thymus pol δ. These results therefore suggest that in addi-
tion to the interdomain connnector loop, other regions of
PCNA are also important effectors of pol δ activity. They
also provide a means to couple operationally, the consid-
erable power of in vivo genetic analyses performed in Dro-
sophila with the sophistication of mammalian
biochemistry.

Results
To study the role of the interdomain connector loop of
PCNA (amino acids 119-133), we compared human and
Drosophila homologs. Of the 15 interdomain connector
loop residues, nine are identical between the two; identi-
cal residues are shaded (Fig. 1A). Overall, Drosophila
PCNA is >70% identical to that from mammals (e.g.,
humans; see [13]). Others showed that PCNA residues
123, 126, 127 and 128 were essential for interaction with
pol δ [28]. Of these four, only one (residue 123) differs
between flies and humans. Also shown is a model con-
structed from the X-ray crystallographically determined
structure of PCNA indicating the locations of the sites to
be mutated in Drosophila PCNA (Fig. 1B). Shown (Fig. 1B)
is the X-ray crystal structure of human PCNA. The Dro-
sophila homolog is assumed to be similar.

Purification of wild-type and site-specifically mutated 
PCNA
Four NH2-terminally his-tagged PCNA variants were
highly purified; purity for each is shown (Fig. 2). First con-
structs were prepared encoding 1) NH2-terminally his-
tagged wild-type human PCNA; 2) NH2-terminally his-
tagged wild-type Drosophila PCNA (dPCNA) and two
dPCNA derivatives; 3) one in which amino acid 123 was
mutated from glutamine to valine (Q123V dPCNA); and
4) the other, in which Drosophila amino acids 119-133
were replaced by the corresponding human sequence
(dr119-133h dPCNA). Then all four were transformed
separately into E. coli (strain M15 [pREP4]) and respective
proteins were expressed. Finally bacteria were lysed and
his-tagged proteins were purified using various proce-
dures including Ni2+-IDA Sepharose chromatography.
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Structure and structural rationale for mutating Drosophila PCNAFigure 1
Structure and structural rationale for mutating Drosophila PCNA. A: amino acid sequences of the interdomain loops 
of Drosophila (designated D.m.) and human (designated H.s.) PCNA. Gray boxes indicate amino acids identical for both organ-
isms; arrows show amino acids thought essential for interaction of human PCNA with human pol δ. Amino acid 123 is the only 
one which is both essential and different in Drosophila versus human PCNA. B: the "front" side of the human PCNA trimer. 
Amino acids 119-133 of the interdomain loops are highlighted by showing their α-carbon atoms as black spheres. The α-car-
bon atom of Val123 is shown as a larger gray sphere.
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The purity of each was determined by SDS-PAGE and is
shown as indicated (Fig. 2). The identity of wild-type
human PCNA was confirmed using mouse monoclonal
anti-mammalian PCNA antibody PC10; the identity of
wild-type Drosophila PCNA was confirmed using affinity
purified polyclonal anti-Drosophila PCNA antibodies pre-
pared in rabbits [12] (not shown).

Stimulation of calf thymus pol δ activity by highly purified 
wild-type versus selected mutant PCNA fractions
Calf thymus pol δ (apparently homogeneous two-subunit
form; see [24]) was purified and assayed for polymerase
activity in the presence of varying concentrations of both
highly purified wild-type and specific mutant PCNA mol-
ecules. We showed previously that either calf thymus or
human PCNA could be used interchangeably as stimula-
tory co-factors for calf thymus pol δ [29] (see also
[12,18,19]). Assays were performed using poly(dA)-
oligo(dT) as described (Experimental Procedures). As can
be seen, human PCNA resulted in robust stimulation of
calf thymus pol δ; much less stimulation was observed for
wild-type Drosophila PCNA (Fig. 3). Mutation of Dro-
sophila PCNA resulted in substantially increased stimula-
tion of calf thymus pol δ; both substitution of a single
amino acid (Q123V dPCNA) and replacement of the
entire fly interdomain connector loop with corresponding
human amino acids (dr119-133h dPCNA) had demon-
strable effects. Of note, at relatively high concentrations,
Drosophila PCNA but with the entire fly interdomain con-
nector loop replaced by corresponding human amino
acids (dr119-133h dPCNA) was similarly effective to
wild-type human PCNA at stimulating the activity of calf
thymus pol δ; however, it was considerably less effective at
lower concentrations (Fig. 3). This suggests an effect on
binding of PCNA to pol δ and/or on mutant PCNA
multimerization.

The effects of highly purified wild-type versus selected 
mutant PCNA fractions on the processivity of 
incorporation by calf thymus pol δ
To examine further, the stimulation of calf thymus pol δ
by both wild-type and specific mutant PCNA molecules,
we examined effects on processivity of nucleotide incor-
poration. Processivity is defined as the number of deoxyri-
bonucleotides incorporated each time a DNA polymerase
binds its template-primer. As can be seen, without PCNA
(Fig. 4 lane 1), pol δ is essentially a distributive enzyme
incorporating only a few nucleotides as a result of each
binding event. With increasing concentrations of wild-
type human PCNA (concentrations increasing from right
to left as indicated), processivity of incorporation
increases dramatically (Fig. 4 lanes 2–4). This correlates
quite closely with the PCNA-mediated activity increase
(see Fig. 3). Wild-type Drosophila PCNA had relatively
much less effect on the processivity of calf thymus pol δ

SDS-PAGE analysis of his-tagged PCNA purified from E. coli extracts after regulated bacterial expressionFigure 2
SDS-PAGE analysis of his-tagged PCNA purified 
from E. coli extracts after regulated bacterial expres-
sion. Purification and SDS-PAGE were as described (Experi-
mental Procedures). Lane 1, 0.4 µg wild-type human PCNA 
was subjected to electrophoresis. Lane 2, 0.8 µg wild-type 
Drosophila PCNA was subjected to electrophoresis. Lane 3, 
0.8 µg Drosophila PCNA containing valine substituted for 
glutamine at position 123 was subjected to electrophoresis. 
Lane 4, 0.45 µg Drosophila PCNA containing amino acids 119-
133 substituted with the corresponding human PCNA amino 
acids was subjected to electrophoresis. Migration positions 
of molecular mass standards are indicated to the right of the 
figure.
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6 0 8 0
(Fig. 4 lanes 5–7; concentrations again increasing from
right to left as indicated). This is also consistent with activ-
ity data presented herein (Fig. 3) as well as with results
reported previously [12]. When mutants of Drosophila
PCNA were tested, both Q123V dPCNA (Fig. 4 lanes lanes
8–10; concentrations again increasing from right to left as
indicated) and dr119-133h dPCNA (Fig. 4 lanes lanes 11–
13; concentrations again increasing from right to left as
indicated), promoted increased pol δ processivities, again
consistent with increased activities (Fig. 3). Increases were
concentration-dependent, also as expected.

Stable complex formation among pol δ, 32P-labeled 
oligonucleotide template-primer and highly purified wild-
type versus selected mutant PCNA fractions
PAGE band mobility shift assays were used to evaluate, in
an essentially qualitative manner, the stability of complex
formation among calf thymus pol δ, labeled template-
primer and highly purified wild-type versus selected
mutant PCNA molecules. As can be seen, wild-type Dro-
sophila PCNA promoted almost no pol δ•PCNA•tem-
plate-primer complex formation (Fig. 5). In contrast,
complex-formation with both Drosophila PCNA mutants
(Q123V dPCNA and dr119-133h dPCNA) was readily
detectable but neither gave results as robust as those seen
with wild-type human PCNA (Fig. 5).

Effect of various purified PCNA fractions on the DNA polymerase activity of calf thymus pol δFigure 3
Effect of various purified PCNA fractions on the DNA polymerase activity of calf thymus pol δ. Calf thymus pol δ 
was incubated in a reaction mixture as described (see Materials and Methods) for 5 min at room temperature. Each incubation 
contained 10 ng of pol δ. DNA product synthesized was determined after placing 5-µl aliquots on Whatman DE-81 filters and 
subsequently washing with a 5% (w/v) solution of Na2HPO4•12H2O. Radioactivity retained on filters was then determined by 
liquid scintillation counter. Reaction mixtures contained increasing amounts, as indicated on the abscissa, of various PCNA 
samples, also as indicated.
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Effect of various purified PCNA fractions on the processivity of nucleotide incorporation by calf thymus pol δFigure 4
Effect of various purified PCNA fractions on the processivity of nucleotide incorporation by calf thymus pol δ. 
Incorporation of [α32P]dTMP by calf thymus pol δ was monitored by standard denaturing PAGE. The substrates used were 
(dA)~500-(dT)12–18 as template-primer and [α-32P]dTTP. Concentrations of PCNA, both wild-type and mutant proteins, are as 
indicated. h, human; dr, Drosophila melanogaster. NH2-terminally his-tagged-PCNA fractions are as indicated; wt, wild-type; 
Q123V, recombinant Drosophila PCNA containing a single amino acid, glutamine at position 123, changed to valine; dr119-133h, 
recombinant Drosophila PCNA containing the entire interdomain connector loop (amino acids 119-133) replaced with the cor-
responding human PCNA amino acids.
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Effect of various purified PCNA fractions on calf thymus pol δ•PCNA•32P-labeled oligonucleotide template-primer complex formationFigure 5
Effect of various purified PCNA fractions on calf thymus pol δ•PCNA•32P-labeled oligonucleotide template-
primer complex formation. Complex formation among pol δ, various purified PCNA fractions and 32P-labeled synthetic 
oligonucleotide template-primers (30-21-mers) was monitored by standard non-denaturing PAGE-band-mobility-shift assays 
[32]. Each incubation contained 10 ng of pol δ, 70 ng of PCNA and 0.1 pmol/reaction (useable 3'-OH) of annealed template-
primer. NH2-terminally his-tagged-PCNA fractions are as indicated; wt, wild-type; Q123V, recombinant Drosophila PCNA con-
taining a single amino acid, glutamine at position 123, changed to valine; dr119-133h, recombinant Drosophila PCNA containing 
the entire interdomain connector loop (amino acids 119-133) replaced with the corresponding human PCNA amino acids.
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DNA synthesis beyond chemically defined template base 
lesions promoted by highly purified wild-type versus 
selected mutant PCNA fractions
As a final test, we examined the abilities of various PCNA
fractions to promote pol δ-dependent DNA synthesis
beyond template base lesions (TLS). PCNA-dependent
TLS by pol δ was first reported by O'Day et al. [30] and
subsequently analyzed in detail biochemically [29]. The
structure of the synthetic oligonucleotide used for evalua-
tion is shown in Fig. 6A. For the data shown (Fig. 6B), X
represents the model abasic site (hereafter termed the aba-
sic site [31]) used previously for many of our studies (e.g.,
see [29]). The mobility of the labeled 21-mer primer,
PAGE-purified but without any subsequent enzymatic
incubation is shown (Fig. 6B lane 1). When calf thymus
pol δ alone was added, primer extension opposite the
template abasic site was detected but there was no discern-
ible elongation of the resulting 22-mer primer and no full-
length product (30-mer) was observed; some degradation
of the 21-mer primer, presumably resulting from the
activity of the intrinsic pol δ 3'-5' exonuclease, was seen
(Fig. 6B lane 2). Addition to incubations of wild-type Dro-
sophila PCNA resulted in slight but readily detectable DNA
synthesis beyond the template abasic site; this included
some full-length 30-mer (Fig. 6B lane 3). Relatively more
full-length 30-mer was seen when Q123V mutant Dro-
sophila PCNA was included in addition to calf thymus pol
δ (Fig. 6B lane 4) and still more full-length 30-mer was
seen when dr119-133h Drosophila PCNA was added (Fig.
6B lane 5). Clearly, the greatest amount of full-length 30-
mer product was seen when wild-type human PCNA was
incubated with calf thymus pol δ (Fig. 6B lane 6). Of note,
wild-type human PCNA also promotes the tightest com-
plex formation between calf thymus pol δ and 32P-labeled
template-primer DNA (see Fig. 5).

Discussion
Although human PCNA and Drosophila PCNA are more
than 70% identical at the level of primary amino acid
sequence, wild-type Drosophila PCNA is only a very poor
substitute for human PCNA in cell-free reactions with calf
thymus pol δ. This is documented both in this report and
previously [12,32]. However, mutating only a single Dro-
sophila PCNA amino acid, glutamine at position 123
(Q123) to valine (V), leads to a dramatic enhancement in
the abilities of Drosophila PCNA to stimulate calf thymus
pol δ. Effects were shown on total activity (Fig. 3), proces-
sivity (Fig. 4), pol δ•PCNA•template-primer complex for-
mation (Fig. 5) and extended DNA synthesis beyond a
template abasic site (Fig. 6). Replacing the entire interdo-
main connector loop of Drosophila PCNA (amino acids
119-133) with the corresponding residues from human
PCNA resulted in additional enhancement (Figs. 3,4,5,6),
but in neither case were the mutants of Drosophila PCNA
(Q123V dPCNA or dr119-133h dPCNA) equivalent to

wild-type human PCNA in the stimulation of calf thymus
pol δ.

Our data indicate that although a single Drosophila PCNA
amino acid at position 123 (in addition to conserved res-
idues 126–128) is very important for pol δ-stimulation,
the further enhancement of stimulation seen when the
entire interdomain connector loop of Drosophila PCNA
(amino acids 119-133) was replaced with the correspond-
ing residues from human PCNA suggests that other resi-
dues in this loop are also involved directly in binding pol
δ. Alternatively, it is possible that loop residues other than
123 and 126–128 play a secondary or indirect (e.g., con-
formational) role in positioning crucial amino acids so as
to optimize their direct binding to pol δ.

In this context, we would like to call attention to the fact
that at relatively low concentrations, dr119-133h dPCNA
is considerably less effective than wild-type human PCNA
in stimulating the activity of calf thymus pol δ; at higher
concentrations, dr119-133h dPCNA and wild-type
human PCNA stimulate calf thymus pol δ similarly. This
implies complex protein-protein interactions between
PCNA and pol δ such that biochemical properties
recorded in dilute solutions in vitro may not accurately
predict properties manifest at much different and gener-
ally much higher intranuclear concentrations present in
vivo. Alternatively, PCNA must be present as a trimer
(three-subunit ring) in order to function. Since the equi-
librium among monomer, dimer and trimer was shown to
depend on PCNA protein concentration [33], it is
certainly possible that the difference observed between
dr119-133h dPCNA and wild-type human PCNA actually
reflects differences in the Keq for PCNA multimerization.
These two possibilities, concerning both complicated pol
δ•PCNA interactions and PCNA multimerization, are not
mutually exclusive.

Similarly, the fact that replacement of the entire interdo-
main connector loop of Drosophila PCNA (amino acids
119-133) with the corresponding residues from human
PCNA did not result in a molecule as effective in stimulat-
ing calf thymus pol δ as human PCNA suggests that
regions other than the interdomain connector loop are
important for pol δ-stimulation. Our data do not address
the question of whether these putative "other regions"
affect pol δ directly (e.g., like the interdomain loop) or
indirectly (e.g., through conformational effects on other
regions of the molecule that do bind pol δ directly). Addi-
tional mutagenesis studies may shed light on this issue.
For example, based on experiments of others, it seems
likely that the extreme C-terminus of PCNA also interacts
directly with pol δ (see [23,34-36]). Hence it may be of
interest to perform similar mutagenesis experiments to
those reported here, focusing instead on the C-terminal
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Effect of various purified PCNA fractions to promote nucleotide incorporation by calf thymus pol δ beyond chemically defined template base lesionsFigure 6
Effect of various purified PCNA fractions to promote nucleotide incorporation by calf thymus pol δ beyond 
chemically defined template base lesions. A: the structure of the 5'-32P-labeled 30-21-mer template-primer; only the 
primer (21-mer) was radiolabeled and X indicates the position of a modified tetrahydrofuran moiety (model abasic site) on the 
30-mer template. B: lane 1, gel-purified primer alone was subjected to electrophoresis; lanes 2–6, incubations were formulated 
as indicated with the template-primer shown in A followed by standard denaturing PAGE. h, human; dr, Drosophila mela-
nogaster. For lanes 2–6, each incubation contained 0.5 pmol of labeled primer (3'-OH ends) annealed to 0.5 pmol of template 
(3'-OH ends), 10 ng pol δ and 70 ng PCNA as indicated. NH2-terminally his-tagged-PCNA fractions are as indicated; wt, wild-
type; Q123V, recombinant Drosophila PCNA containing a single amino acid, glutamine at position 123, changed to valine; dr119-
133h, recombinant Drosophila PCNA containing the entire interdomain connector loop (amino acids 119-133) replaced with 
the corresponding human PCNA amino acids.
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region of Drosophila PCNA, rather than the interdomain
connector loop.

We think it should also be noted that both Oku et al. [35]
and Ola et al. [36] prepared hybrid proteins between
human and S. cerevisiae PCNA. As in our studies, Ola et al.
[36] found that regions other than the interdomain con-
nector loop of PCNA were important for interaction with
pol δ. These authors suggested that additional interacting
regions were likely to exist both in the PCNA C-terminus
and N-terminus.

It may also be of interest to prepare double-mutants, first
in the interdomain connector loop of Drosophila PCNA,
thereby allowing efficient in vitro function with purified
calf thymus pol δ, and then elsewhere in the PCNA mole-
cule corresponding to interesting sites defined phenotyp-
ically by in vivo genetic studies of others. For example, it
might be possible to determine if particular mus209 muta-
tions leading to enhanced mutagen sensitivity among
affected organisms (see [37] and references therein) alter
any functional interactions between PCNA and pol δ in
vitro. Results of such studies could lead to novel biochem-
ical insights regarding the mechanism(s) by which point
mutations in the Drosophila PCNA gene lead to enhanced
mutagen sensitivity among animals bearing these
mutations.

The strategy taken here will presumably allow study of
interactions between PCNA and other proteins with
which it interacts. In this context, we think it important to
note that partial effects on pol δ-stimulation have been
recorded. This suggests that our methodology will also
allow detection of partial rather than complete effects on
the binding of other proteins. Interactions between PCNA
and many of the molecules with which it interacts have
recently been mapped [23] and for example, one might
immediately compare interactions between several mam-
malian proteins (e.g., human RF-C, DNA ligase I, FEN I
and/or p21) and both various wild-type and mutant
PCNA molecules described in this paper. Functional (e.g.,
effects on pol δ activity) as well as direct binding measure-
ments may be made. As with PCNA•pol δ interactions, it
may ultimately be feasible to correlate interesting PCNA
molecules defined phenotypically using genetic analyses
performed in living animals and biochemical studies of
specific PCNA•protein binding. For example, do mutagen
sensitive mus209 animals bear mutations in a region of
PCNA responsible for MSH binding? Both MSH3 and
MSH6 were reported to possess a consensus motif for
binding to the interdomain connector loop of PCNA [38].

Finally, we think it important to note that pol δ has most
recently been reported to contain at least four subunits
(see e.g., [39,40]) yet all experiments performed here were

with the two-subunit form of the enzyme purified from
calf thymus. We and others have shown that the larger
subunit, p125, is catalytic while the smaller, p50, does not
seem to contact the DNA closely (see e.g, [41]), but
instead, is required for processivity-stimulation by PCNA
(e.g., see [42]) to which it apparently binds. It is also clear
that PCNA binds to what has been termed, the third pol δ
subunit, p68 or p66 in mammalian systems [39,43,44],
Cdc27p in S. pombe [40] and Pol32p in S. cerevisiae
[45,46]. Clearly the physiologically important interaction
between PCNA (either mutant or wild-type) and this third
pol δ subunit was omitted from our analyses, but could
markedly affect any or all of the responses of polymerase
to PCNA that we reported here.

Conclusions
Through our experiments, we showed that Drosophila
PCNA could be "humanized" and that "humanization"
(mutation of key Drosophila residues to human ones)
increased effects on mammalian pol δ. The highly purified
two-subunit form of pol δ was used for all of our studies.
It is possible, though we think it unlikely, that different
conclusions would be reached if a different form of pol δ
(three-or four-subunit) was used. Nevertheless two of the
effects we observed could be considered beneficial. They
were enhancement of polymerase activity and processiv-
ity. A third effect seems likely to be detrimental, at least
over the long term, that is increased synthesis opposite
and beyond a chemically defined template base lesion
(TLS). Our data suggest that all three of these effects result
from enhancement of PCNA-dependent stability of the
pol δ•PCNA•template-primer complex. In other words,
in the range that we have studied, the more tightly pol δ
binds to DNA, the greater its activity, the greater its proces-
sivity, but also the more likely it is to catalyze TLS. Our
results provide an explicit approach to correlate in vivo
genetic studies with rigorous in vitro biochemistry.

Methods
Materials
Unlabeled deoxyribonucleoside triphosphates (dNTPs)
were from Boehringer-Mannheim; [α-32P]ATP and [α-
32P]dTTP were from Amersham Corp. E. coli DNA
polymerase I Klenow fragment without 3'-5' exonuclease
activity (exo-), was expressed and purified according to
standard protocols [47]. Terminal deoxynucleotidyl trans-
ferase (TdT) was from Sigma. Micrococcal nuclease was
from Boehringer-Mannheim. Pfu DNA polymerase was
from Stratagene. Ni2+-IDA Sepharose was from Pharmacia
(Piscataway, NJ). Acrylamide and methylene bis-acryla-
mide were from Eastman Organic Chemicals and for pro-
tein SDS-PAGE, were further purified by adsorption of
impurities to activated charcoal. For PAGE of nucleic
acids, they were purified by adsorption to an ion exchange
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resin. All other materials were of reagent grade and were
used without additional purification.

Proteins
PCNA was purified to apparent homogeneity from calf
thymus [17] as was pol δ [24,48]. Human PCNA cDNA
was cloned into a bacterial expression vector and human
PCNA was purified from an E. coli extract, also to apparent
homogeneity [18]. D. melanogaster PCNA was purified to
apparent homogeneity identically after bacterial expres-
sion [13]. A his-tag was added to the NH2-termini of both
human and Drosophila PCNA by cDNA insertion into
pQE30 (Qiagen, Valencia, CA) using BamH1 and HindIII
restriction endonuclease sites.

Nucleic acids
Templates and primers, all of defined sequence, were syn-
thesized conventionally by Dr. F. Johnson and colleagues
(Stony Brook). Before use, they were purified by standard
denaturing PAGE [49]. All other DNA manipulations were
performed according to standard techniques [49].

Methods
Much of the methodology was described in detail previ-
ously [12,19,20,24,29,32,41,50,51]. SDS-PAGE was
according to Laemmli [52] as modified [53] on minigels
or as reported previously [54]. For immunoblots, proteins
were transferred electrophoretically to nitrocellulose [55]
and resulting replicas were probed with antibodies.
Reactivity was visualized colorimetrically [56] with alka-
line phosphatase-conjugated goat anti-IgG antibodies
[57,58] and a one-solution phosphatase substrate
(Kirkegaard and Perry, Gaithersburg, MD). Immunologic
detection of human PCNA was with mouse monoclonal
antibody (mAb) PC10 (Oncogene Sciences, Uniondale,
NY). Detection of Drosophila PCNA was with affinity puri-
fied polyclonal rabbit anti-Drosophila PCNA antibodies
[12]. Restriction endonucleases were from Boehringer
(Indianapolis, IN) and were used according to the ven-
dor's instructions. DNA sequencing performed in both
directions was according to Sanger et al. [59] using a fluo-
rescence-based method and an ABI 373 (Applied Biosys-
tems, Foster City, CA) automated DNA sequencer.

Site-directed mutagenesis of Drosophila PCNA
Site-directed mutagenesis of NH2-terminally his-tagged
Drosophila PCNA was performed exactly as described [20]
to generate either the Q123V protein or chimeric mole-
cules containing the entire Drosophila PCNA sequence
except for amino acids 119-133 which were replaced by
the corresponding residues from human PCNA.

Purification of his-tagged PCNA
Purification of his-tagged PCNA to apparent homogeneity
was performed exactly as previously described [20]. Char-

acterization was by SDS-PAGE (Fig. 2) and immunoblot
analysis.

DNA polymerase δ incubations
Assays of pol δ on synthetic oligonucleotide template-
primers were performed essentially as previously
described [24]. Primers were 5' end-labeled with T4 poly-
nucleotide kinase in the presence of [γ-32P]ATP. After-
ward, labeled primer was annealed to an unlabeled
template. The standard reaction mixture for pol δ con-
tained 40 mM Bis-Tris, pH 6.7, 6 mM MgCl2, 1 mM dithi-
othreitol, 10% glycerol and 40 µg/ml bovine serum
albumin. Additional details are provided in the figure leg-
ends. Incubations were terminated by addition of stand-
ard stop solution and aliquots were subjected to 12%
PAGE in the presence of 7 M urea and 15% formamide.
After electrophoresis, gels were subjected to autoradiogra-
phy and/or Molecular Dynamics 445 SI PhosphorImager
analyses.

Pol δ processivity
Processivity was evaluated qualitatively using (dA)~500
annealed to (dT)12–18 (both from Pharmacia) in a final
volume of 5 µl containing 6 nmol poly(dA) (nucleotide),
0.2 nmol (dT)12–18 (nucleotide), 10 µM dTTP, 100 µCi [α-
32P]dTTP, 40 mM Bis-Tris, pH 6.7, 6 mM MgCl, 1 mM
dithiothreitol, 10% glycerol, 40 µg/ml bovine serum albu-
min, 10 ng of highly purified pol δ and various quantities
of different PCNA samples as indicated. Assays were for 5
min at room temperature and were stopped by addition of
standard PAGE stop solution and PAGE in the presence of
7 M urea. After electrophoresis, gels were subjected to
autoradiography and/or Molecular Dynamics 445 SI
PhosphorImager analyses.

Nondenaturing PAGE band mobility shift assays
Nondenaturing PAGE band mobility shift assays were per-
formed essentially as previously described [32] but with-
out MgCl2 and otherwise as detailed in the figure legend.
EDTA was included in each incubation and in the gel elec-
trophoresis buffer at a final concentration of 3 mM.
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