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Abstract

Background: The co-chaperonin protein 10 (cpnl0) assists cpn60 in the folding of nonnative
polypeptides in a wide range of organisms. All known cpnl0 molecules are heptamers of seven
identical subunits that are linked together by -strand interactions at a large and flexible interface.
Unfolding of human mitochondrial cpnl0 in urea results in an unfolded heptameric state whereas
GuHCI additions result in unfolded monomers. To address the role of specific interface residues
in the assembly of cpnl0 we prepared two point-mutated variants, in each case removing a
hydrophobic residue positioned at the subunit-subunit interface.

Results: Replacing valine-100 with a glycine (Vall00Gly cpnl0) results in a wild-type-like protein
with seven-fold symmetry although the thermodynamic stability is decreased and the unfolding
processes in urea and GuHCI both result in unfolded monomers. In sharp contrast, replacing
phenylalanine-8 with a glycine (Phe8Gly cpnl0) results in a protein that has lost the ability to
assemble. Instead, this protein exists mostly as unfolded monomers.

Conclusions: We conclude that valine-100 is a residue important to adopt an oligomeric unfolded
state but it does not affect the ability to assemble in the folded state. In contrast, phenylalanine-8
is required for both heptamer assembly and monomer folding and therefore this mutation results
in unfolded monomers at physiological conditions. Despite the plasticity and large size of the cpnl0
interface, our observations show that isolated interface residues can be crucial for both the
retention of a heptameric unfolded structure and for subunit folding.

Background

Protein-protein interactions are of fundamental impor-
tance to molecular biology because they determine a wide
array of protein structures and functions. In addition to
heterogeneous protein-protein complexes, many proteins
are oligomeric due to the association of identical subu-
nits. In fact, the majority, 70-80 %, of all enzymes are oli-

gomeric [1]. The function of quaternary structure, i.e. the
arrangement of multiple subunits into an oligomer, may
be to allow for cooperative effects, formation of novel
active sites, provide additional stability, increase solubil-
ity or decrease osmotic pressure [2]. The folding pathways
of only a few oligomeric proteins (mostly dimers and
tetramers) have been reported, revealing a variety of
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mechanisms [3-7]. Some proteins display monomeric or
dimeric intermediates (e.g. E. coli Trp repressor and the
ATPase SecA [8,9]) whereas other fold in apparent two-
state reactions in which folding and oligomerization are
coupled (e.g. P22 Arcrepressor [10,11]). It remains a chal-
lenge to understand the way in which the amino acid
sequence of a polypeptide controls both the folding of
individual subunits and their assembly to higher-order
quaternary structures.

The heptameric co-chaperonin protein 10 (cpnl0) is an
attractive model for studies of the interplay between
polypeptide folding and protein-protein assembly. The
primary function of the cpn10 heptamer is to assist cpn60
in folding of nonnative proteins. Upon binding to cpn60,
cpnl10 forms a cap covering the central cavity of cpn60,
and folding of substrates (nonnative proteins) is achieved
through cycles of ATP-dependent binding and dissocia-
tion [12-15]. The quaternary structures of the cpn10 and
cpn60 proteins appear conserved in all organisms. In
addition to the well-established co-chaperonin activity,
several cpnl0Q proteins are potent stimulators of the
immune system. Despite that their structural homology,
there are dramatic immunogenic differences between
cpnl0 proteins from different species: for instance,
human and E. coli cpnl0 are very poor immunogens
whereas Mycobacterium tuberculosis and Mycobacterium lep-
rae are strong immunogens [16,17]. Co-chaperonin pro-
teins can also stimulate T lymphocyte proliferation,
induce cytokine secretion, trigger apoptosis, and affect cell
growth and development [18]. It is not known what oli-
gomeric or structural states of the cpn10 proteins are used
to promote these additional, non-chaperonin functions.

Cpn10 from E. coli, GroES, is the most thoroughly studied
co-chaperonin protein and a crystal structure has been
described [19]. Crystal structures for Mycobacterium tuber-
culosis and Mycobacterium leprae cpn10 and bacteriophage
T4 Gp31 proteins have also been reported [20-22]. Each
E. coli cpn10 subunit adopts an irregular B-barrel topol-
ogy. The dominant interaction between the subunits in
the native doughnut-like structure is an anti-parallel pair-
ing of the first B-strand in one subunit and the final B-
strand in the other subunit [19]. The core residues of these
strands are conserved among cpnl0 proteins. According
to the crystal structure of E. coli cpn10, there are also many
additional, complementary interactions that stretch
across the interface. The flexibility of the involved side
chains, and of the backbone in these regions, contributes
to the plasticity of the interface. Human mitochondrial
cpnl0 is 37 % identical to GroES in terms of primary
structure. X-ray crystallography and NMR spectroscopy
studies have revealed human cpn10 to have a fold, with
similar flexible regions, that is identical to the fold of E.
coli GroES [23-25].
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We recently showed that human cpn10 dissociates into
monomers below a concentration of approximately 3 uM
(monomer concentration), corresponding to a AGy; of
195 kJ/mol, heptamer [26]. This modest affinity might be
linked to a significant loss of configurational entropy
upon oligomerization, which would be the case if folding
and assembly processes are coupled. In accord, we have
found that monomeric cpn10 adopts a folded structure in
solution, but that it exhibits only marginal thermody-
namic stability [27]. Chemically-induced unfolding using
GuHCI leads to a monomeric unfolded state whereas,
interestingly, non-native heptamers form when using urea
as the denaturant [26]. Thermally- and chemically-
induced unfolding reactions of cpn10 are fully reversible:
during the equilibrium unfolding processes no other oli-
gomeric species, except for heptamers and monomers,
have been observed [26]. From a biophysical point of
view, it is remarkable that the cpn10 polypeptides adopt
the unique heptameric structure without any misfolding,
misassembly, or aggregation side reactions.

To begin to identify the role of interfacing residues for
adopting the oligomeric structure, we designed two point-
mutated variants of human mitochondrial cpn10. In one
variant, a valine in the final B-strand has been replaced by
glycine (Val100Gly cpn10), in the other, a phenylalanine
in the N-terminal B-strand has been replaced by a glycine
(Phe8Gly cpn10) (Figure 1). The biophysical behaviors of
the two cpnl10 variants are dramatically different. The
folded state of Val100Gly cpnlO remains heptameric
although it exhibits somewhat lower thermodynamic sta-
bility as compared to wild-type cpn10. This mutation,
however, disrupts the unfolded oligomeric state found for
wild-type cpn10 in urea. In the case of Phe8Gly cpn10,
this mutation both unfolds the protein and dissociates the
heptamer into mostly monomers. We conclude that
despite the large and plastic subunit-subunit interface, a
specific residue, like the highly conserved phenylalanine-
8, can have a crucial role for both assembly of cpn10 in
the unfolded state and for the folding and assembly of
each subunit in the native state. Other interfacial residues,
such as the non-conserved valine-100, have only modest
effects on the folding of the subunits and the native oligo-
meric state, but still significant effects on the unfolded
quaternary structure of cpn10.

Results

Oligomeric state of cpnl0 variants

The quaternary structure of Vall00Gly and Phe8Gly
cpnl0 variants were probed by gluteraldehyde cross-link-
ing as well as by gel-filtration under native conditions (5
mM phosphate, pH 7, 20°C). Val100Gly cpn10 forms
heptamers, like wild-type cpn10, according to both cross-
linking and gel-filtration experiments (Figure 2A and 2B).
In contrast, cross-linking results suggest that Phe8Gly
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Figure |

Structure of heptameric human mitochondrial cpnl0 [23] with Phe8 (blue) and Vall 00 (red) highlighted in all subunits. One
monomer is highlighted in yellow. Diagram produced in RasWin v2.6.

cpnl0 forms an array of monomeric, dimeric, trimeric,
etc. species, with monomers and dimers dominating, at
protein concentrations up to 1 mM monomer concentra-
tion (Fig. 2A). In addition, gel-filtration on Phe8Gly
cpnl0 suggests the presence of oligomeric species with
sizes in between that of dimers and trimers (Fig. 2B).

Secondary and tertiary structure of cpnlO0 variants

The far-UV CD signal of Val100Gly cpn10 is identical to
that of wild-type cpn10 in agreement with folded, B-barrel
subunits forming the heptameric ring (Figure 3A). In
addition, tyrosine fluorescence of Val100Gly cpn10 indi-
cates a folded, native-like species (Figure 3B). ANS binds

Page 3 of 13

(page number not for citation purposes)



BMC Biochemistry 2003, 4

a.
1 23 435
- -
heptamer » -
£
o
(o]
N
(/)]
0
<
monomer » i

Figure 2

http://www.biomedcentral.com/1471-2091/4/14

T
1
1
1
)
.

40 50 60 70 80 90
Eluant (ml)

A. Polyacrylamide gel showing cpnl0 variants after treatment with cross-linking agent gluteraldehyde (lanes 3-5). All reactions
included 60 uM total protein (5 ng total protein loaded in each lane). Lane |, marker (200.0 kDa; 116.0 kDa; 97.4 kDa; 66.3
kDa; 55.4 kDa; 36.5 kDa; 31.0 kDa, 21.5 kDa; 14.4 kDa; 6.0 kDa); Lane 2, wild-type cpn |0 without cross-linking agent; Lane 3,
wild-type cpnl0; Lane 4, Vall00Gly cpnl0; Lane 5, Phe8Gly cpnl0. B. Gel filtration traces for wild-type cpnl0 (light blue),
Vall00Gly cpnl0 (green), and Phe8Gly cpn 10 (blue). The column was calibrated with molecular weight globular standards
(dashed line): Ribonuclease A, 13,700 Da; Chymotrypsinogen A, 25,000 Da; Ovalbumin, 43,000 Da; Bovine Serum Albumin,

67,000 Da; Blue Dextran 2000, » 2,000,000 Da.

to hydrophobic exposed surfaces and its increased
emission upon such binding has been used extensively to
probe non-native, intermediate states of proteins [29-32].
In accord with a well-folded structure, we find no increase
in ANS emission in the presence of Val100Gly cpnl0 as

compared to in the presence of wild-type cpn10 (data not
shown).

In sharp contrast, Phe8Gly cpn10 does not adopt native
tertiary structure since the characteristic tyrosine contribu-
tion at 230 nm in the far-UV CD spectrum, reporting on
the restricted environment of the three tyrosines [26], is
absent (Figure 3A). Moreover, the tyrosine emission of
Phe8Gly cpn10 is similar to that of unfolded wild-type
cpnl0 (Figure 3B). Still, Phe8Gly cpnl10 exhibits some

residual secondary structure according to far-Uv CD (Fig-
ure 3A).

To further address the presence of structure in the
Phe8Gly cpn10 variant, one-dimensional NMR data was
collected. 'Ha shifts are reliable predictors of backbone
dihedral angles and secondary structure [33]. Figure
4A,4B,4C,4D shows the 11.0 ppm to 3.35 ppm region of
the 'H spectra recorded at 25 °C of wild-type cpn10 at pH
7 (A) and pH 3 (B) and Phe8Gly cpn10 at pH 7 (C) and
pH 3 (D). The spectra of both molecules at pH 7 look sim-
ilar: the broad amide resonances are dispersed downfield
up to ~10 ppm and some o protons are resonating down-
field from the water signal up to 5.7 ppm. The similarity
of these two spectra indicates that some secondary struc-
ture is still retained in Phe8Gly cpn10 at pH 7. However,

drastically different spectra were recorded after lowering
the pH. The wild-type cpn10 spectrum at pH 3 (Fig. 4B)

has not changed much. However, in the Phe8Gly cpn10

spectrum at pH 3 (Fig. 4D) the sharp amide protons
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A. Far-UV CD spectra of wild-type cpn |0 (solid line), Val|00Gly cpn |0 (dotted line), and Phe8Gly cpn 10 (dashed line) in 5 mM
phosphate, pH 7 (20°C). Also shown is unfolded wild-type cpnl0 (thin line) in 4 M GuHCI (pH 7, 20°C). B. Tyrosine emission
(excitation 280 nm) of wild-type cpnl0 (solid line), Val|00Gly cpnl0 (dotted line), and Phe8Gly cpnl0 (dashed line) in 5 mM
phosphate, pH 7 (20°C). Also shown is unfolded wild-type cpnl0 (thin line) in 4 M GuHCI (pH 7, 20°C).

resonate in the narrow 8.0-8.7 ppm region and none of
the a protons is visible downfield from 4.7 ppm, clearly
indicating that at this pH Phe8Gly cpn10 exists in a fully
unfolded state. Taken together, the NMR data shows that
Phe8Gly cpn10 adopts some secondary structure at pH 7,
but that these structural elements are not stable.

There is an increase in ANS emission (5-fold as compared
to wild-type and Val100Gly cpn10 variants) when in pres-
ence of Phe8Gly cpn10 at pH 7. This supports that this
variant is not correctly folded but has exposed hydropho-
bic surfaces.

Thermal denaturation of Vall00Gly cpnlO0 variant

Thermal unfolding of wild-type cpn10 leads to unfolding
and dissociation and, therefore, there is a protein-concen-
tration dependence in the transition midpoints (T,,): the
higher the protein concentration, the higher the T, [26].
Thermal unfolding of wild-type and Val100Gly cpn10 can
be monitored by changes in far-UV CD and tyrosine emis-
sion, as well as by differential scanning calorimetry
(DSC). Regardless of the probing method, the thermal
midpoint is the same for a particular protein concentra-
tion, suggesting that thermal denaturation is an apparent
two-state mechanism with only folded heptamers and
unfolded monomers involved (data not shown). The T,

Page 5 of 13

(page number not for citation purposes)



BMC Biochemistry 2003, 4

ppm

Figure 4

http://www.biomedcentral.com/1471-2091/4/14

Comparison of 'H resonances dispersion (1 1.0 ppm to 3.35 ppm) in wild-type cpnl10 (A, pH 7 and B, pH 3) and Phe8Gly cpnl0

(C, pH 7 and D, pH 3) at 25°C.

values are lower for the Val100Gly mutant as compared to
those for wild-type cpn10 (for identical total protein con-
centrations), in accord with a decrease in monomer stabil-
ity and/or subunit-subunit binding affinity in Val100Gly

cpn10 (Figure 5A, Table 1). The breakpoint of the T, ver-
sus protein concentration graph indicates a heptamer-to-
monomer Kd of ~5 uM for Val100Gly cpn10 (correspond-
ing to a AGy;, of ~185 KkJ per mol of heptamer). This value
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A. Thermal midpoints (T,,) as a function of cpnl0 (total monomer) concentration (5 mM phosphate, pH 7); wild-type cpnl0
(circles) and Vall100Gly cpnl0 (squares). Inset: Relative fluorescence (308 nm) per Vall00Gly cpn10 monomer as a function of
total concentration. B. DSC thermograms for |5t (open circles; T, s of 63°C and 72.5°C) and 2" (open squares; T, of 69°C)
thermal scans after mixing 40 uM Vall00Gly cpn |0 with 40 uM wild-type cpnl0 at 20°C (5 mM phosphate, pH 7). Top: Rela-
tive fluorescence changes for It (filled circles; Tms of 59°C and 71.5°C) and 2"d (filled squares; Tm of 65°C) thermal scans after
mixing 9 uM Vall00Gly cpn 10 with 12 uM wild-type cpnl0 at 20°C (5 mM phosphate, pH 7).

is further supported by dilution experiments monitoring
tyrosine fluorescence as a function of protein concentra-
tion (Inset, Figure 5A), a method previously used to probe
the K, [26].

Interaction of cpnl0 variants with wild-type cpnl0
Both cpn10 variants were tested for their ability to substi-
tute as subunits in the wild-type cpn10 heptamer using

thermal denaturation as the detection probe. Each mutant
was mixed with wild-type cpn10 in various mixing ratios
and thermal transitions were monitored by both tyrosine
fluorescence and DSC. In all cases, the first thermal scans
resulted in two transitions, corresponding to each pro-
tein's individual thermal transition, suggesting that at
room temperature the cpn10 heptamers do not exchange
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Table I: Thermal midpoints (T,,) observed with different Vall00Gly and wild-type cpnl0 total protein (monomer) concentrations (5

mM phosphate, pH 7). Error bar is £ 1°C in each case.

Protein concentration (uM)

T, (°C) Vall00Gly cpnl0

T., (°C) wild-type cpnl0

|
2
3
4
5
10
20

30
50

50.5
53
55
58
59
60

62
63

67.5
69.5
70
70.5

71.5

725
73

subunits with other heptamers (or other oligomers in the
case of mixing with Phe8Gly cpn10).

When Val100Gly cpn10 was mixed with wild-type cpn10,
the second scans (i.e. after one cycle of heating and cool-
ing) revealed single thermal transitions with midpoints in
between the two individual T, values (examples in Figure
5B). The second-scan T, values depended linearly on the
mixing ratio of Val100Gly to wild-type cpn10 (data not
shown), as would be the case if the two cpn10 monomers
mix and form new hybrid heptamers upon cooling
according to the stoichiometry of monomers in solution.
This finding strongly support that Val100Gly cpn10 forms
native-like oligomers.

In stark contrast, second scans of Phe8Gly cpn10 mixed
with wild-type cpn10 did not differ from the first thermal
scans (data not shown). Second scans, again, showed a
broad low T, of Phe8Gly cpn10 (at ~40°C) and a higher
more cooperative T, for wild-type cpn10. Thus, even
upon dissociation and unfolding, wild-type cpnl0
subunits do not interact with Phe8Gly cpn10 subunits.
One would expect a native-like Phe8Gly cpn10 monomer
to have the ability to pair with at least one wild-type
cpnl10 monomer (C-terminus side of Phe8Gly cpn10 is
not altered). Since no interactions are observed at all, this
further supports that Phe8Gly cpn10 is mostly unfolded.

Ability of cpnl0 variants to assist in substrate refolding

The functional consequence of the two cpn10 mutations
was tested in a GroEL-dependent citrate synthase refold-
ing assay in vitro. In our set up (see Methods), the presence
of wild-type cpn10 results in GroEL-assisted refolding of
citrate synthase to 52 + 4 %. This amount is similar to
GroEL-assisted refolding of citrate synthase in the pres-
ence of GroES [26]. Presence of the Val100Gly cpn10 var-
iant resulted in substrate refolding as efficient, or slightly
better, than wild-type cpnl0 (62 + 4 % citrate synthase
refolding). The Phe8Gly cpn10 variant, however, failed to

assist GroEL in substrate refolding (< 3 % citrate synthase
refolding).

GuHCI and urea-induced denaturation of Vall 00Gly
cpnlO

Previously we have shown (surprisingly) that the dena-
tured state at room temperature of wild-type cpnl0
strongly depends on the chaotropic agent used, urea or
GuHClI [26]. In equilibrium-unfolding experiments using
GuHCI, wild-type heptameric cpnl0 dissociates and
unfolds in a coupled, apparent two-state (folded heptam-
ers to unfolded monomers), process, while urea promotes
unfolding but not dissociation of the cpnl0Q structure
(folded heptamers to unfolded, or non-native, heptam-
ers). We find that also with Val100Gly cpn10, the nature
of the chemical denaturant affects the unfolding/dissocia-
tion mechanism although the final state reached is always
that of unfolded monomers. Upon additions of GuHCI,
far-UV CD and tyrosine emission signals of Val100Gly
cpn10 change simultaneously in a two-state like reaction.
Independent of Val100Gly cpn10 concentration, the equi-
librium-unfolding transition midpoint occurs at ~0.7 M
GuHCl (Figure 6A, Table 2). Correlating cross-linking
experiments of identical Vall00Gly/GuHCl samples
reveal that this cpn10 variant is heptameric during the far-
UV CD and fluorescence transition, and that the mono-
meric species is not detected until after around 1 M
GuHCl has been added (data not shown). Thus,
Val100Gly cpn10 denaturation induced by GuHCI is a
three-state process: polypeptide unfolding occurs at low
GuHCI concentrations (detected by fluorescence and far-
UV CD) and is followed by oligomer disassembly (as
observed by cross-linking) at higher GuHCI concentra-
tions. From Figure 6A, we derive the free energy of hep-
tamer unfolding without dissociation (i.e. two-state
analysis of the first step: from folded to non-native hep-
tamer) to around 12 KkJ per mol of heptamer (Table 2).
This corresponds to a predicted AG;(H,O) of ~1.7 kJ per
mol of monomer.
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Urea concentration (M)

A. GuHCl-induced unfolding of Vall00Gly cpn10 (pH 7, 20°C) monitored by fluorescence (solid symbols) and CD (open sym-

bols) at various total protein concentrations; 30 uM (circles), 50 UM (squares), and 70 uM (triangles). B. Urea-induced unfold-
ing of Vall00Gly cpnl0 (pH 7, 20°C) monitored by fluorescence changes at 308 nm at various total protein concentrations; 30
UM (circles), 50 UM (squares), and 70 uM (triangles). Far-UV CD measurements give identical transitions.

When urea is used as the chemical denaturant, the equilib-
rium-unfolding mechanism for Val100Gly cpn10 is differ-
ent from that of Val100Gly cpn10 in GuHCI and from
that of wild-type cpn10 in urea. A protein-concentration
dependence is observed in the urea-induced data as mon-
itored by spectroscopy: the more protein present, the
more stable appears the heptamer (Figure 6B, Table 2).
This can be explained by an apparent two-state
mechanism in which only folded heptamers and
unfolded monomers are populated. Thus, the valine-100
mutation abolishes the ability of cpnl10 to adopt an

unfolded oligomeric structure in urea. Using a 1-folded
heptamer to 7-unfolded monomers mechanism to ana-
lyze the unfolding data in Figure 6B, a free energy for
going from a folded Val100Gly heptamer to seven
unfolded monomers of 197 kJ/mol heptamer is estimated
(Table 2). In Figure 7, a simple scheme for unfolding and

disassembly pathways of the cpn10 heptamer (wild-type
and Val100Gly variants) is shown.

Page 9 of 13

(page number not for citation purposes)



BMC Biochemistry 2003, 4 http://www.biomedcentral.com/1471-2091/4/14

Table 2: Thermodynamic parameters (denaturant concentrations at transition midpoints and corresponding free energies extrapolated
to zero denaturant concentration) for Vall00Gly cpnl0 denaturation by GuHCI and urea (pH 7, 20°C) at various total protein
concentration.

Denaturant [protein] (uM) Midpoint (M) AGU(H,0) (k}J/mol AGU(H,0O) average (k]/mol
oligomer) oligomer)
GuHCI 10 0.7 10+ 1
30 0.7 14+ 1
50 0.7 I1+2 12+2
Ureab 30 2.25 197 £ 6
50 2.70 195+ 6
70 3.00 200+ 6 197 £ 6

a. AGU(H,O) calculated using a 7-mer to 7-mer reaction mechanism. b. AGU(H,O) calculated using a 7-mer to |-mer reaction mechanism.

Discussion non-native heptamer is detected as an intermediate along
Cpn10 is a heptamer of seven identical subunits forming  the path. This implies that the mutation must have an
a ring-structure of seven-fold symmetry. B-strand pairing  effect on monomer stability as well as on the interface sta-
between the N-terminus of one subunit and the C-termi-  bility; in fact, the destabilization of the folded monomer
nus of another is the major source of interactions in the  must be larger than any destabilization of the interface in
rather large and flexible subunit-subunit interface [23]. In  the folded state. This is supported by the thermodynamic
context of such plasticity, how can heptamer specificity be =~ parameters presented in Figure 7. Comparing the K, for
achieved? To begin to address this question, we used the  heptamer dissociation of wild-type and Val100Gly cpn10
crystal structure of human mitochondrial cpn10 [23] to  shows that the folded interface in Val100Gly cpn10 is
design two point-mutated variants. Valine-100 is situated ~ destabilized by only ~5 %, whereas the stability of the
at the end of the C-terminal B-strand (residues 92-100)  folded monomer is destabilized by ~45 % as compared to
that pairs with the N-terminal B-strand (residues 7-13) at ~ wild-type cpn10. It is clear that valine-100, although situ-
the subunit-subunit interface in human cpn10. According  ated on the interface, plays a role for the stability of the
to the crystal structure, this residue makes close contact ~ folded monomeric unit. In accord, valine-100 packs with
with Lys-7 and Leu-9 in the neighboring subunit. The  Tyr-99 on the surface of the B-barrel [23] and upon its
other selected residue, phenylalanine-8, interacts with res-  removal a destabilizing solvent channel towards the
idues leucine-9 and proline-10 intra-molecularly, and leu-  hydrophobic core may be created.

cine-96 to tyrosine-99 inter-molecularly.

Our biophysical characterization shows that replacing

valine-100 with glycine (Val100Gly cpn10) results in a

wild-type-like heptameric protein with wild-type-like .
function, although the overall thermodynamic stability of V100G (Kp): 185 kJ/mol 7xF v1001();r.~e l;lfculo.l;s:kl/mol
the heptamer is decreased. Like wild-type cpnl0, the wt (Kp): 195 kl/mol w: 7.x 3 ki/mol
unfolding/dissociation mechanism for Val100Gly cpn10 F, « wt (GuHCI): 215 kJ/mol y» 7xU
depends on the chemical denaturant; however the V100G (urea): 197 ki/mol
mechanisms in urea and GuHCI differ from those deter- wt (urea): 22 k/mol /
mined for wild-type cpnl10: importantly, an unfolded V100G (GuHCI): 12 kl/mol U,

heptameric state is never stable (Figure 7). In urea, wild-

type cpnl0 unfolds to a non-native heptamer [26].

Val100Gly cpn10, on the other hand, unfolds in an appar- .
ent two-state reaction from folded heptamers to unfolded ~ Figure 7

monomers in urea. This can be explained by a crucial ~ Ihermodynamic scheme for unfolding (F, fOId?d; U,
destabilization of the interface interactions in the unfolded) and disassembly (index 7, heptamer; no index,

unfolded mutant. In GuHCI, which is a stronger denatu- monomer) of Vall 00Gly (V100G) and wild-type (wt) cpn|0.

1d 10 unfolds b Energetics, calculated from KD determinations and chemical-
rant, wild-type cpnl0 untolds by an apparent two-state denaturant unfolding reactions, are shown together with the

mechanism with only folded heptamers and unfolded  gerived predictions for unfolding of monomers. See text for
monomers populated. GuHCI additions to Vall100Gly  fyrther discussion.
cpn10 also result in unfolded monomers, although here a
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Table 3: A. Protein sequence alignment of cpnl0 N- and C-terminal strands involved in subunit-subunit interactions. Mutated human

cpnlO0 residues discussed in this paper are underlined.

A.

Sequence Name N-terminus

C-terminus

CHI0_MYCLE KIKPLEDK...
CHI0_MYCTU NIKPLEDK...
CHI0_ECOLI NIRPLHDR...
CHI10_MOUSE KFLPLFDR...
CHIO_YEAST SIVPLMDR...
CHIO0_RAT KFLPLFDR...
CHI0_HUMAN KELPLFDR...

..ARDVLAVVS
..ARDVLAVVS
..ESDILAIVE
..DSDILGKYV
..DAEILAKIA
..DGDILGKYV
..DGDILGKYY

In sharp contrast to the findings on Val100Gly cpn10,
upon eliminating phenylalanine-8, the heptamer never
assembles and the monomers are mostly unfolded (and
do not function in substrate refolding together with
GroES). The phenylalanine-8 mutation thus disrupts the
ability of cpn10 to fold and assemble, and it also abol-
ishes the ability to adopt an unfolded oligomeric state.
Our Phe8Gly cpn10 observations imply that either correct
assembly is a prerequisite for folding of each monomer or
the monomers must adopt some initial (correct) structure
before correct assembly will occur. The "negative" mixing
experiments between Phe8Gly cpnl0 and wild-type
cpnl0 support the latter conclusion since, apparently,
wild-type cpn10 cannot act as a template inducing struc-
ture in Phe8Gly cpn10.

The amino-acid sequences of the N- and C-terminal B-
strands involved in subunit-subunit interactions in
selected cpn10 proteins from various species have been
aligned in Table 3 (residues 7 to 13 and 92 to 100 of the
human cpnl0 sequence). According to the SwissPROT
database, there are 86 full-length sequences that show
homology to cpn10. It is clear from the comparison of all
these sequences that most of the subunit-subunit interface
is conserved, at least with respect to the nature of each
residue at each position. The interface in human cpn10
consists of mostly hydrophobic residues (of the 16 resi-
dues shown in Table 3; 11 are non-charged, mostly hydro-
phobic residues). Phenylalanine-8 in human cpnl0 is
conserved in 25 % of the compared species, but 100 % of
the 86 sequences have an aliphatic, bulky residue (either
Phe, Ile, Leu, or Val) at that position. The conservation of
a large, hydrophobic residue at the position of phenyla-
lanine-8 in all cpn10 species known suggests that it plays
an important structural role in all cpn10 heptamers. In
contrast, valine-100 is only conserved to 5 % in the 86
compared sequences. The presence of valine-100 at the
interface in human cpn10 may therefore be to tune the
interface plasticity so that cpn10 interactions with cpn60

and substrates are facilitated. Such interactions will be
species specific, in accord with the variability of residues
found at this position across the cpn10 family members.

Conclusions

It is not uncommon that point-mutations result in
unfolded proteins. However, mutations that disrupt
oligomeric unfolded states, like the two mutants charac-
terized here, are unprecedented. Despite the large surface
area and plasticity of the cpn10 monomer-monomer
interface, our findings show that isolated residues can
have crucial effects on the ability to assemble. Elimination
of valine-100 does not affect the assembly in the folded
state, but abolishes it in the unfolded state. However,
elimination of phenylalanine-8 not only disrupts assem-
bly in the unfolded state, but also the ability of the mon-
omers to fold. Together with data on other interface
mutants, these results may shed light on the unexpected
observation of a heptameric unfolded state for wild-type
cpn10 and the interplay between folding and assembly in
a heptameric protein.

Methods

Preparation of human mitochondrial cpnl0

Preparation of human cpn10 from recombinant E. coli has
been described previously [24,25]. Protein concentration
was determined from g,5, = 4200 M-lcm-! (50 mM Tris-
HCI, 135 mM NacCl, 6 M GuHCl) established by amino
acid analysis.

Preparation of mutants

Design of the two mutants was performed by analysis of
the crystal structure (see Results), selecting two residues at
the interface. The QuickChange Site-Directed Mutagenesis
Kit (Stratagene) was used to construct the selected point-
mutated proteins. Briefly, plasmid constructs were sub-
jected to multiple rounds of de novo DNA synthesis in the
presence of mutagenic primers. Next, parental strands
were digested with Dpnl restriction enzyme, and potential
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mutants were screened and sequenced to confirm muta-
tions. Protein expression was performed by the stimula-
tion of T7/Lac expression using pET24d plasmid
(Novagen) constructs by addition of 2 mM IPTG
(Promega). Purification of the cpn10 variants was carried
out as previously described for wild-type cpn10. Yields of
purified mutant proteins ranged from 15 to 45 mg per L
cell culture.

Spectroscopic methods

Absorption spectra were measured on a Cary 50 spectro-
photometer (1 cm cell). For far-UV circular dichroism
(CD) measurements, an OLIS spectropolarimeter (1 cm
cell for 1 to 5 uM cpn10; 1 mm cell for >5 uM cpn10; 200-
260 nm spectra) was used. In CD measurements, the sam-
ple compartment was purged with nitrogen gas to avoid
absorption by O,. Fluorescence spectra (1 cm cell, excita-
tion at 280 nm (tyrosine), emission maximum at 308 nm;
5 nm excitation and 5 nm emission slits, respectively)
were collected on a Varian Eclipse fluorometer. Experi-
ments were performed at 20°C in 5 mM phosphate
buffer, pH 7, unless otherwise stated.

Cross-linking with gluteraldehyde

Reagents for cross-linking were purchased from Sigma. All
cpn10 samples were prepared and incubated for ~10 min
at 20° C before addition of gluteraldehyde (1 % w/v final).
When needed, GuHCI was incorporated. After 2 min incu-
bations, the reactions were quenched by addition of
NaBH, (50 mM). Following 20 min further incubation,
the cross-linked cpn10 solutions were precipitated with
trichloroacetic acid (10 % w/v). The resulting pellets were
analyzed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) using a pre-cast Novex gel
(4-12 %) available from Invitrogen.

Gel-filtration

Gel filtration was performed on a calibrated 16/60 Super-
dex 75 column (Pharmacia). Calibration was performed
with Pharmacia Low Molecular Weight Calibration Kit
(Ribonuclease A, 13,700 Da; Chymotrypsinogen A,
25,000 Da; Ovalbumin, 43,000 Da; Bovine Serum Albu-
min, 67,000 Da; Blue Dextran 2000, » 2,000,000 Da).
Due to its non-spherical shape, heptameric wild-type
cpnl0 runs as a 56,000 Da molecule under this
calibration.

ANS binding

l-anilinonaphthalene-8-sulfonic acid (ANS) was pur-
chased from Fluka (highest purity). ANS emission at 485
nm (excitation at 354 nm) was recorded for native condi-
tions (buffer, pH 7, 20°C), and during heating, of wild-
type and mutant cpn10 proteins in the presence of 25-fold
molar excess ANS.

http://www.biomedcentral.com/1471-2091/4/14

NMR spectra

NMR spectra were recorded on a Bruker Avance DRX 500
spectrometer in 5 mM phosphate buffer. The pH of the
samples was adjusted with HCI. The spectrometer was
equipped with a 5 mm Bruker inverse triple resonance
probe with a triple axis gradient coil. In the 1D 'H spectra
water suppression was achieved using presat or watergate
(3919) techniques [28].

Citrate synthase activity assay

The full procedure has been reported elsewhere [34], but
the major steps are as follows. Pig-heart citrate synthase
(Sigma) was denatured at room temperature for 20 min-
utes by dissolving solid GuHCI into a 40 mM solution of
citrate synthase [3 mM DTT, 2 mM EDTA]. While vortex-
ing, denatured citrate synthase was added to reaction mix-
tures of wild-type, Phe8Gly or Val100Gly cpn10 and E.
coli GroEL. ATP was added to a final concentration of 2
mM to initiate chaperonin-assisted refolding. After 1
hour, an aliquot of the reaction was added to a quartz cell
containing oxaloacetate, acetyl-CoA and phosphate
buffer, pH 7.4. Citrate synthase activity (catalyzing the
condensation of oxaloacetate and acetyl-CoA to citrate
and CoA) was measured by the decrease in absorption at
233 nm, which corresponds to the disappearance of
acetyl-CoA. The percent recovery of citrate synthase activ-
ity was normalized to the activity of the native protein.

Thermally-induced unfolding

Thermal unfolding was found to be reversible by far-uUv
CD and fluorescence and occurred in a single transition
(midpoint corresponding to T,,) that was independent of
detection method. Different equilibration times (5-10
minutes) at each temperature did not change the thermal
profiles, and re-scans of original samples gave identical
results with the exception of mixing experiments (see
Results). Thermally-induced unfolding data for wild-type
and Val100Gly cpn10 were collected at different protein
concentrations (1-30 uM).

Thermally-induced unfolding was also monitored by DSC
(MicroCal Inc.). Before start of such experiments, samples
were degassed using a ThermoVac accessory unit. Prescan
equilibration time was 30 minutes. At least three buffer-
versus-buffer scans (25 to 85°C, 90°C/h) were taken to
obtain a reproducible baseline. Every protein solution was
scanned three times in order to assess reversibility of the
reaction. The DSC scans were carried out under a pressure
of 30 psi and passive (no cell-cell compensation) mode
was used for the equilibration of reference and the sample
cells. Protein concentration range was 50-100 uM and 5
mM phosphate buffer pH 6.0 was used in these
experiments.
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Chemically-induced unfolding

Chemical denaturants, urea (ICN Biochemicals) and
GuHCI (Sigma Chemicals), were of highest purity. Urea
solutions were prepared immediately before use. Unfold-
ing of Val100Gly was monitored by far-UV CD and by flu-
orescence at various protein concentrations (see Results
and Table 2). Stock solutions of urea or GuHCI were
mixed with cpn10 solutions to give a fixed final protein
concentration in each set of experiments. In all cases did
far-UV CD and fluorescence give identical results. Equili-
bration time before measurements were 5-10 min. For
unfolding of Val100Gly cpn10 in urea which was protein-
concentration dependent, data analysis was performed
using an apparent two-state reaction coupled to dissocia-
tion as described previously [26]. Unfolding of Val100Gly
cpnl0 in GuHCI was independent of the protein concen-
tration and, therefore, each such transition was analyzed
using a two state model without a dissociation [26]. Errors
in thermodynamic parameters were derived from compar-
ing multiple experiments.
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