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Abstract

Background: Kynureninase is a key enzyme on the kynurenine pathway of tryptophan
metabolism. One of the end products of the pathway is the neurotoxin quinolinic acid which
appears to be responsible for neuronal cell death in a number of important neurological diseases.
This makes kynureninase a possible therapeutic target for diseases such as Huntington's,
Alzheimer's and AIDS related dementia, and the development of potent inhibitors an important
research aim.

Results: Two new kynurenine analogues, 3-hydroxydesaminokynurenine and 3-
methoxydesaminokynurenine, were synthesised as inhibitors of kynureninase and tested on the
tryptophan-induced bacterial enzyme from Pseudomonas fluorescens, the recombinant human
enzyme and the rat hepatic enzyme. They were found to be mixed inhibitors of all three enzymes
displaying both competitive and non competitive inhibition. The 3-hydroxy derivative gave low K,
values of 5, 40 and 100 nM respectively. An improved 3-step purification scheme for recombinant
human kynureninase was also developed.

Conclusion: For kynureninase from all three species the 2-amino group was found to be crucial
for activity whilst the 3-hydroxyl group played a fundamental role in binding at the active site
presumably via hydrogen bonding. The potency of the various inhibitors was found to be species
specific. The 3-hydroxylated inhibitor had a greater affinity for the human enzyme, consistent with
its specificity for 3-hydroxykynurenine as substrate, whilst the methoxylated version yielded no
significant difference between bacterial and human kynureninase. The modified purification
described is relatively quick, simple and cost effective.

Background

Kynureninase (EC 3.7.1.1) is a pyridoxal-5'-phosphate
(PLP) dependent enzyme which catalyses the B, y-hydro-
lytic cleavage of the amino acids kynurenine (1, R = H)
and 3-hydroxykynurenine (1, R = OH) to give either
anthranilic acid (2, R = H) or 3-hydroxyanthranilic acid
(2, R=OH) and alanine (3) (Figure 1) [1].

It is one of the enzymes in the kynurenine pathway of
tryptophan metabolism [2], a pathway which is currently
eliciting considerable interest due to the neurological
activities of some of its endproducts particularly the exci-
totoxin quinolinic acid [3]. Quinolinic acid is an agonist
of NMDA (N-methyl-D-aspartate) receptors and increased
levels of quinolinic acid cause overstimulation resulting
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in eventual neuronal cell death [1,3]. This phenomenon
has been demonstrated in patients that are neurophysio-
logically impaired and manifest supraphysiological levels
of this potent neurotoxin in their brain and spinal column
fluids, although it is still unclear whether the levels can
become high enough to be excitotoxic [4]. The design and
synthesis of potent and selective inhibitors of kynureni-
nase could prove to be useful in the development of the
successful treatment regimen for neurological disorders
such as septicemia, AIDS (Acquired Immune Deficiency
Syndrome) related dementia, Lyme disease, Huntington's
and Alzheimer's disease[1,4].

In our laboratory, we have synthesised a series of substrate
analogues of kynurenine as inhibitors of the enzyme. We
report here, the results of our studies using two of these
compounds, methoxylated and hydroxylated desami-
nokynurenine derivatives, as inhibitors of the bacterial
enzyme (Pseudomonas fluorescens), rat hepatic kynureni-
nase and recombinant human enzyme, expressed in a bac-
ulovirus/insect cell system. In an earlier report [5] from
our laboratory, the findings indicated that the dihydrox-
ydesamino derivative markedly inhibited both mamma-
lian enzymes with a K; = 250 nM. This finding thus
prompted additional research into the effects of the
monohydroxy substituted desaminokynurenine. It is
known that the bacterial and mammalian enzyme differ
in their substrate-selectivity [6] and therefore it is possible
that the potency of inhibitory compounds is species
dependent. In addition an improved 3 step purification of
the recombinant human enzyme is also outlined.

Results

Purification

Recombinant human kynureninase was successfully puri-
fied to homogeneity in a modified three step procedure

(Figure 2).

Synthesis of novel inhibitors

The two new inhibitors, 3-hydroxydesaminokynurenine
(4) and 3-methoxydesaminokynurenine (5) (Figure 3)
were successfully synthesised using adaptations of previ-
ously reported methods [7]. The spectral data for the two
final inhibitors confirmed their structures and analysis by
reverse phase HPLC was used to confirm their purity.

Inhibition studies

From the results obtained in table 1 it is clear that there is
significant difference in the degree of inhibition with the
hydroxylated when compared to the methoxylated inhib-
itor. The type of inhibition is also mixed in all instances as
indicated by the Lineweaver-Burk (Figure 4) and Dixon
plots (Figure 5) [7]. Previously [8] it has been shown that
the recombinant human enzyme is also inhibited simi-
larly when treated with 3,5-dihydroxydesaminokynure-
nine, which was also the case with both inhibitors, used
in this study.

Discussion

The improved purification of recombinant human
kynureninase has allowed the rapid production of stocks
of purified enzyme for inhibition studies. The 3 step puri-
fication is a significant improvement over the previously
published procedure [9] which involved 6 steps. This pro-
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Figure 2

Discontinuous gel electrophoresis of human
kynureninase. 10% SDS-Page gel image of purified recom-
binant kynureninase (20 pg) at 52.4 kDa in the presence of
PLP. This NuPAGE Novex Bis-Tris Gel (prepacked) was pro-
duced using the Xcell SureLock Mini-Cell from Invitrogen.
The pertained Mark |12 standards were also acquired from
Invitrogen. Run conditions were 200 V (constant)/35 minute
in MES buffer with expected current of 100—125 mA/gel at
start going to 60—80 ma/gel at the end.

tocol can be performed in less than 60 hrs thereby reduc-
ing the overall time involved in keeping the enzyme at
4°C. Other major advantages are the elimination of one
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Structures of new inhibitors

Table I: Comparative inhibition of kynureninase from different
sources by synthetic substrate analogues.

Source K,(4) / (nM) K, (8) / (uM)
Bacterial 100 10

Rat 40 175

Human 5 15

The inhibition constants (K;) were determined from the figures 4 and
5 for 3-hydroxydesaminokynurenine (4) and those for 3-
methoxydesaminokynurenine (5) were determined in a similar
fashion (graphs not shown).

of the harsh strong anion steps and the time consuming
ammonium sulfate precipitation, that invariably result in
significant losses of enzyme. The net result is a substantial
increase in the overall yield of kynureninase (up to 3 fold)
when compared to first published protocol [9].

Human kynureninase was previously shown to possess
two substrate binding sites [9], a regulatory non-catalytic
site plus catalytic site, and it can be assumed that it is this
phenomenon that determines the mixed pattern of inhi-
bition common to all three enzymes. The two inhibitors
reflect interesting differences in their affinity for kynureni-
nase from the three sources. It is clear that racemic 3-
hydroxydesaminokynurenine (4) shows most potent
inhibition with the recombinant human kynureninase
giving a K; of 5 nM (Table 1; fig. 5 inset). This is in good
agreement with the observed specificity of the human
enzyme, which was found to be completely specific for 3-
hydroxykynurenine (1, R = OH) (K, = 3.0 £ 0.10 uM)
with no appreciable substrate activity for kynurenine. The
hydroxyl group at the 3-position thus appears to be an
important recognition element. When this hydroxyl
group is then methylated to give (5) there is a very signif-
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Figure 4

Inhibition of rat hepatic kynureninase by 3-hydroxydesaminokynurenine (4) Primary Lineweaver Burk (L/B) plot of
kinetic data for inhibition of rat hepatic kynureninase by 3-hydroxydesaminokynurenine (4) (I =0 (H); | = 50 nM (A) | = 100

nM (¥); 1 =200 nM (<« »); | =400 nM (@); | = 600 nM (L)) depicting mixed inhibition. s = substrate (3-hydroxykynurenine)
and v = specific activity. The inset is a secondary plot of slope against [I] to determine the K; (40 nM). The slopes were calcu-

lated from a L/B plot (n = 3).

icant, 3000-fold, decrease in inhibitor binding. Such a
decrease would seem to imply that the hydroxyl group is
acting as a hydrogen bond donor, which is not possible
once it has been methylated. Indeed the observed value
for the K, for the 3-methoxy derivative (15 uM) (table 1)

is similar to that for kynurenine (D-enantiomer = 12 uM,
L-enantiomer = 20 uM) [10], which has no 3-substituent
at all. This proposed binding role for the 3-hydroxyl group
is further supported by the observation that another
mixed inhibitor of the bacterial enzyme, desami-
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Figure 5

Inhibition of bacterial kynureninase by 3-hydroxydesaminokynurenine (4) Dixon plot illustrating inhibition of bacte-
rial kynureninase by 3-hydroxydesaminokynurenine (4) (I = 0 (#); 1 =200 nM (¥); | = 400 nM (A); | = 600 nM (H). The inhibi-
tion is mixed and gives a K; = 100 nM and the graph is a replot of the data (n = 3) used to construct a Michael's—-Menten plot.
The inset is a secondary plot of slope (from L/B) against inhibitor concentration for recombinant human kynureninase (n= 3
and r2= 0.99) to calculate K, (5 nM). The concentration of substrate was varied between 2.5 uM — 20 uM. Lines were fitted to

a straight line equation for linear regression.

nokynurenine, also had a K;of 12 + 3.1 uM (unpublished
results). The data also imply, as we have previously noted,
that the 2-amino group does not have an important role
in active site binding but appears to be required for activ-
ity and that interactions with the aromatic ring are neces-
sary for both binding and activity. This conclusion is
supported by the observation that cyclohexyl substrate
analogue derivatives, when tested on the bacterial

enzyme, manifested exceptionally reduced affinities for
the active site with a K; of 422 + 47 uM (unpublished).

In the case of the rat and Pseudomonas enzymes, activity
has been reported with both 3-hydroxykynurenine and L-
kynurenine. The rat enzyme gives K, values of 5 uM and
500 uM respectively, with values of 200 uM [8] and 44.2
puM [11] determined for the Pseudomonas enzyme. There
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does appear to be a correlation between the K;and K, val-
ues in terms of modifications to the ring for both the bac-
terial and rat enzymes. The observed pattern is the same as
with the human enzyme. In the case of the bacterial
enzyme, removal of the 2-amino group and adding a 3-
hydroxy to the ring profoundly increases the affinity
(Table 1; K; = 100 nM) but with a concomitant loss of
activity. Addition of a 3-methoxy group decreases the
affinity 200 fold and hence it can again be inferred that
the 2-amino group is crucial for activity whilst the 3-
hydroxy group plays an important role in binding at the
active site. The findings with the rat enzyme follow the
same trend with the exception being that there is a greater
increase in the K; for 3-methoxydesaminokynurenine
when compared to the value obtained for the bacterial
enzyme.

Conclusions

In conclusion thus it can be stated that for the three spe-
cies the 2-amino group is crucial for activity whilst the 3-
hydroxyl group plays a fundamental role in binding at the
active site presumably via hydrogen bonding. The potency
of the various structural analogue inhibitors does indeed
appear to be species specific depending on the substrate
specificity of the enzyme. In general the 3-hydroxylated
inhibitor had a greater affinity for the human enzyme
whilst the methoxylated version yielded no significant dif-
ference between bacterial and human kynureninase.

Methods
All chemicals were of reagent grade and purchased from
Sigma-Aldrich unless otherwise indicated.

Overexpression of recombinant human kynureninase

This was achieved with the 'Bac-to-Bac' baculovirus
expression system [11]. Enzyme activity was determined
using a fluorescence based assay as previously described
[11].

Enzyme purification

The bacterial enzyme was partially purified from Pseu-
domonas fluorescens using a modification of a literature
procedure [10]. Rat hepatic kynureninase was also
purified using a modification of the protocol of Takeuchi
etal [12].

Recombinant human kynureninase was purified in the
following manner: Harvested insect cells were Dounce
homogenised in 90 mM L-His /containing 0.25 M
sucrose, 1 mM DTT, 0.5 mM EGTA, 10 uM PLP, 100 uM
PMSF, 2 pg/mL aprotinin plus 1 pg/mL pepstatin and leu-
peptin respectively at pH 7.5 and 0°C. The resultant
homogenate was then centrifuged at 40 K for 2 hrs @ 0°C
in a Beckman 42.1 rotor. The supernatant was retained
after assaying positive for activity and the pellet was dis-

http://www.biomedcentral.com/1471-2091/4/13

carded. This solution was then syringe filtered twice, ini-
tially with a 0.45 uM unit which was then followed by a
0.20 pM filter (Millipore).

Step | (S-Cation)

This column and the 0.2 uM syringe filtered fraction were
equilibrated with 15 mM L-His /pH 6.0 with subsequent
sample application to the strong cationic column (Biorad
(20 uM particle size)). Bound enzyme was eluted with 2
M NacCl /10 mM Tricine over 260 mL. The enzyme was
released at 10% NaCl and dialysed over 18-24 hrs in 2 x
5L of 10 mM Tricine/pH 7.7, containing the various addi-
tives as mentioned earlier.

Step 2 (Q-Anion)

This dialysed enzyme was applied to a strong anion
exchange column (Biorad (20 pM particle size)) previ-
ously equilibrated with 10 mM Tricine pH 8.8 and the
bound enzyme eluted with 7% 2N NaCl in 5 mM KH,PO,
after extensive washing with 100 mL gradient of 0 - 5% 2
M NacCl in 5 mM of the same buffer. The eluted enzyme
was dialysed as above in 5 mM KH,PO, again with the
necessary additives at pH 6.8.

Step 3 (Hydroxyapatite (CHT 1)): The active dialysed frac-
tion was collected and applied to a hydroxyappatite
column (Biorad prepacked (10 uM particle size)) that has
been equilibrated with 5 mM KH,PO, at pH 6.8. The col-
umn with bound kynureninase was washed with 3 vol-
umes of the start buffer and eluted with a 5 - 500 mM
KH,PO,over 250 mL. Kynureninase eluted at approxi-
mately 60 mM. This highly active fraction was then con-
centrated with a vivaspin 20 mL concentrator
incorporating a 30 kDa exclusion limit polyethersulfone
membrane, saturated with PLP and stored in a 0.05%
NaNj at -80° C until future use. This enzyme had a specific
activity of 300 nmoles/mg protein/min and a K, ~ 3.0 uM

The various purification steps were followed with 10%
SDS-PAGE utilising Invitrogen gel kits [13]. A tryptic mass
fingerprint obtained by MALDI-TOF mass spectrometry of
a band of the expected molecular weight confirmed its
identity as kynureninase. The protein concentrations were
determined with the Bradford assay [14]. Recombinant
human kynureninase from the final hydroxyapatite step
was assayed for purity using SDS-PAGE (fig 3). The purifi-
cation was executed at 4°C and performed with the aid of
a BIOCAD 700E perfusion chromatography workstation
that is coupled to an ADVANTEC SF-2120 super fraction
collector all supplied by Perceptive Biosystems.

Synthesis of novel inhibitors

The two inhibitors were synthesised using adaptations of
previously reported methods [11]. The 3-hydroxydesami-
nokynurenine (4) was prepared from 3-hydroxyacetophe-
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Synthesis of inhibitors a) (CH;);COCI, pyridine, 0°C (79%); b) CuBr, ethyl acetate, CHCI;, reflux, 4 hr (63%); c) NaH,
AcNHCH(CO,Et),, DMF, 0°C (57%); d) HCI, diethyl ether, reflux, 6 hr (76%)

none (6) (Figure 6). The hydroxy group was first protected
as the pivalate ester derivative and then the methyl group
brominated to give (7). The bromide (7) was then cou-
pled to anion of diethyl acetamidomalonate in DMF to
give the fully protected amino acid (8). Deprotection
under acidic conditions provided the target compound. In
the case of the 3-methoxydesaminokynurenine (5), the
starting material was 3-methoxyacetophenone which
could be used without necessity for an initial protection
step. The spectral data for the two final products are as fol-
lows; 3-Hydroxydesaminokynurenine (4): m.p. 188°C
(dec.); (Found: C, 48.61; H, 5.00; N, 5.63 C,;,H,,CINO,
requires C, 48.89; H, 4.92; N, 5.69%); v, (nujol)/cm!
3383 (NH), 1739 (CO, acid), 1660 (CO); §,, (300 MHg,
2H,0)3.73 (2H, d, 5, 5.0 Hz, 3-CH,), 4.39 (1H, t,],35.0
Hz, 2-CH), 7.06 (1H, dd, J 2.4, 1.0 Hz, 4'-H), 7.26 (1H,
m, 5'-H), 7.30 (1H, m, 2'-H), 7.41 (1H, dd, ] 7.8, 1.0 Hz,
6'-H); 8(75.4 MHz, 2H,0) 38.21 (s, 3-CH,), 48.88 (s, 2-
CH), 114.47 120.78 (s, 4'-C), 121.90 (s, 2'-C), 121.90 (s,
6'-C), 130.51 (s, 5'-C), 136.56 (1'-C), 156.10 (s, 3'-C),
171.77 (s, OCOH), 199.07 (s, 4-CO); m/z (CI) 210 ([M +
HJ+, 13), 195 (100, ([M+H-NH]*), 177 (18, [C,,HgOs4
+HJ*), 164 (17, [M-(CO,H)*]), 149 (35, [CoH,0,]*), 43
(95, [CH,CNH,]*). 3-Methoxydesaminokynurenine (5):
m.p. 164°C (dec.); v (nujol)/cm! 3378 (NH), 1738
(CO, acid), 1681 (CO); &y (200 MHz, 2H,0) 3.77 (3H, s,
OCHS,), 3.80 (2H, d, J;, 5 Hz, 3-CH,), 4.47 (1H, 1, J,5 5
Hz, 2-CH), 7.17 (1H, dt, ] 8, 2.8 Hz, 4'-H), 7.39 (2H, m,
2', 5'-H), 7.53 (1H, m, 6-H); 5. (50.31 MHz, 2H,0),
41.26 (s, 3-CH,), 51.82 (s, 2-CH), 58.48 (s, OCHs,),
115.72 (s, 2'-C), 123.64 (s, 4'-C), 124.35 (s, 6'-C), 133.22
(s, 5-C), 139.06 (s, 1'-C), 162.06 (s, 3'-C), 174.46 (s,
CO,H), 201.66 (s, 4-CO); mjz (CI) 224.0913 (MH4+)

C,;H4,NO requires 224.0922, 209 (100, ([M+H-CH;]*),
191 (49, [HO-C(H,COCH,CHCO,HNH,-H,0]*), 178
(73, [M+H-C,H,0,]*), 135 (18, [CH;0C,H,CO]+). Anal-
ysis by HPLC (C,;, reverse phase silica, 3 p, flow rate 3
mL/min, 1% acetic acid, 20% methanol) confirmed the
purity of both inhibitors.

Graphs were plotted using the GraphPad Prism3 software
package and the kinetic parameters K, and V,,,, were
obtained using non linear regression. Lineweaver Burk
and Dixon [9] plots allowed characterisation of the type of
inhibition.
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