
BioMed CentralBMC Biochemistry
BMC Biochemistry 2002, 3Research article
Kinetic comparison of tissue non-specific and placental human 
alkaline phosphatases expressed in baculovirus infected cells: 
application to screening for Down's syndrome
Colette C Denier1, Andrée A Brisson-Lougarre1, Ghislaine G Biasini1, 
Jean J Grozdea2 and Didier D Fournier*1

Address: 1Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, Université Paul Sabatier (UMR 5068), 118 route de 
Narbonne, 31 062, Toulouse, France and 2Laboratoire d'Enzymologie, Service Universitaire d'Hématologie, CHU de Rangueil, 31054 Toulouse, 
France

E-mail: Colette C Denier - denier@cict.fr; Andrée A Brisson-Lougarre - andreelou@yashoo.com; Ghislaine G Biasini - denier@cict.fr; 
Jean J Grozdea - fournier@cict.fr; Didier D Fournier* - fournier@cict.fr

*Corresponding author

Abstract
Background: In humans, there are four alkaline phosphatases, and each form exibits a
characteristic pattern of tissue distribution. The availability of an easy method to reveal their
activity has resulted in large amount of data reporting correlations between variations in activity
and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a
trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and
immunological properties,  and in its affinity for some specific inhibitors.

Results: To analyse these differences, the biochemical characteristics of two isozymes (non
specific and placental alkaline phosphatases) were expressed in baculovirus infected cells.
Comparative analysis of the two proteins allowed us to estimate the kinetic constants of
denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing
better discrimination between the two enzymes. These parameters were then used to estimate the
ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus.
It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non
pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast,
in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity.

Conclusion: Over-expression of the placental isozyme compared with the tissue-nonspecific form
in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline
phosphatase in these cells is different from normal. Application of this knowledge could improve
the potential of using alkaline phosphatase measurements to screen for Down's syndrome.

Background
Alkaline phosphatase (AP, orthophosphoric monoester
phosphohydrolase, alkaline optimum, EC 3.1.3.1) is a

group of ubiquitous enzymes found in nearly every organ.
So far, four different human isoenzymes have been iden-
tified: the tissue non-specific isozyme (NSAP) is expressed
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in numerous tissues [1], while the three specific genes
have more restrictive expression: in intestin (intestinal AP;
[2]), placenta (PLAP; [3,4]) or thymus and testis (germ-
cell AP; [5]).

AP are zinc-containing dimeric proteins which catalyze
the hydrolysis of phosphomonoester with release of inor-
ganic phosphate and alcohol at alkaline pH. The catalytic
mechanism was first deduced from the structure of the
bacterial enzyme[6] and was recently confirmed from the
structure of a human isozyme [7]. It involves the activa-
tion of a serine by a zinc atom, the formation of a phos-
phorylenzyme, the hydrolysis of the phosphoseryl by a
water molecule activated by a second zinc atom and the
release of the phosphate or its transfer to an acceptor. Four
main catalytic functions have been attributed to these en-
zymes, hydrolase activity on low molecular weight phos-
phomonoesters [8], phosphotransferase activity [9],
protein phosphatase activity [10] and pyrophosphatase
activity [11]. The physiological role of AP is poorly
known, except for the involvement of the NSAP isoen-
zyme in the mineralisation of bone tissue [12]. In blood,
only NSAP is found in the serum [13] and in neutrophils
[14,15]. These cells contain a wide variety of enzymes
functionally active in host defense. Among them AP,
probably serving in membrane upregulation, has been
identified in specific inclusions, the secretory granules,
representing a highly mobilizable storage compartment.
AP is detectable in differentiated granulocytes, including
myelocytes, meta myelocytes, band forms and segmented
neutrophils.

With pregnancy, AP increases in the serum. This phenom-
enon originates from the PLAP synthesized in the placenta
from the 7th week of pregnancy which passes into the
mothers serum [13,16–19]. Besides this activity in the se-
rum, the AP activity also increases in the neutrophils of
pregnant women, but it is the NSAP isozyme which is re-
sponsible [20]. As yet, little is known of the mechanisms
regulating AP activity during the course of normal gesta-
tion. Three distinct mechanisms presumably act in combi-
nation to elicit AP activity: i) the physiological
hyperleucocytosis occurring with a steady increase in leu-
cocyte count during pregnancy [21]; ii) the rise in placen-
tal hormonal secretions, estrogen and mainly
progesterone, results in an increase in AP activity correlat-
ed with an elevation of steady state mRNA levels as a con-
sequence of enhanced gene transcription [22,23]; iii) the
induction by granulocyte colony stimulating factor (G-
CSF), one of the most important modulators responsible
for NAP activity [15].

The characteristics of AP from blood neutrophils of wom-
en whose fetuses had trisomy 21 differ from those with
normal pregnancies. An elevated AP activity has been re-

ported in affected individuals [24]. An ectopic expression
of PLAP seems to appear since i) AP is more stable to heat
and urea denaturation [24–26], ii) AP is more sensitive to
inhibitors L-homo-arginine, EDTA, L-phenylalanine, L-p-
bromotetramisole and sodium thiophosphate [26,27]
and iii) AP is less recognized by anti-NSAP antibodies and
shows a reaction with anti-PLAP antibodies [28].

These variations in the respective levels of expression of
NSAP and PLAP in serum and neutrophils can lead to
these enzymes being used as markers to detect trisomy 21
fetuses. However, this method has been reported to be
controversial [29,30] while others found it to be reliable
[31,32]. This discrepancy may originate from the difficul-
ty of separating the two isozymes, NSAP and PLAP. Thus,
we studied some of their properties after in vitro produc-
tion of recombinant enzymes in baculovirus infected cells
in order to provide data useful to differentiate the two iso-
zymes.

Results
Comparisons of enzyme stability
Enzymes were denatured by urea and by heating. In the
presence of urea, we observed a decrease of active enzyme
concentration until a plateau suggesting that the denatur-
ation was reversible (Fig. 2). Thus, the kinetic of denatur-
ation was analyzed with scheme 1,

where E represents the native enzyme, Ed the inactive de-
natured enzyme, kd the denaturation rate constant and kr

Figure 2
Inactivation of alkaline phosphatase by urea: effect of incuba-
tion of PLAP and NSAP with 7.4 M urea on activity.
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the renaturation rate constant. The variation of remaining
activity (E/E0) with time t follows equation 1:

Analysis of data by non-linear regression gave an estima-
tion of the two rate constants kd and kr for the two en-
zymes (Fig. 2). The renaturation rate constant (kr) was
significantly different from zero confirming the reversibil-
ity of the urea denaturation. Placental AP appeared to be
more resistant to urea denaturation than NSAP while the
renaturation rate constants were not significantly differ-
ent.

The heat denaturation rate differed between the two en-
zymes at the all temperature assayed. Denaturation was ir-
reversible and the simplest model which fitted to the data
is illustrated by scheme 2,

where Ed represents the irreversible form of the denatured
enzyme. The variation of remaining activity (E/E0) with
time t follows:

Analysis of data led to the rate constant kd for the two en-
zymes (Fig. 3). Placental AP appears to be 15 fold more re-
sistant than NSAP.

Comparison of kinetic constants of NSAP and PLAP
Hydrolysis of p-nitrophenylphosphate by the two recom-
binant enzymes did not reveal any significant difference
in their affinity for this substrate. Km were estimated to
171 +/- 12 µM and 180 +/- 15 µM respectively. For each
enzyme, we observed a decrease of Km with pH (from 9.5
to 8) but without any meaningful difference between the
two enzymes.

Sodium thiophosphate is a full competitive inhibitor of
AP [26], and the inhibition was thus studied according to
scheme 3,

where E represents the enzyme, S the substrate p-nitroph-
enylphosphate, and I the reversible inhibitor. For clarity,
free substrate and inhibitor are omitted from the presen-
tation as are the products. Variation of the hydrolysis rate
of the substrate (v) with substrate and inhibitor concen-
trations follows equation 3:

Placental AP was more than four times more sensitive to
this inhibitor than NSAP (Fig 4).

L-p-bromotetramisole is an uncompetitive inhibitor spe-
cific for alkaline phosphatase, it binds to the phospho-
rylenzyme intermediate preventing dephosphorylation
[33] as phenylalanine [34]. Binding of inhibitor is shown
on scheme 4,

Figure 3
Inactivation of alkaline phosphatase by temperature: effect of
incubation of PLAP and NSAP at 56°C on activity.
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where E represents the free enzyme; ES, the Michaelian
complex; EX the phophorylenzyme and EXI, the inhibitor
bound on the phosphoryl enzyme. The variation of the
hydrolysis rate of the substrate (v) with substrate and in-
hibitor concentrations follows equation 4:

L-p-bromotetramisole appeared to be a potent inhibitor
of the two enzymes. Placental AP was more sensitive than
NSAP (Fig. 5).

Quantification of NSAP and PLAP in neutrophils
Phosphatase activity from neutrophils of pregnant wom-
en with a normal or with a trisomy 21 fetus were slightly
different (1.8 +/- 0.4 and 1.2 +/- 0.2 n I.U. per mg protein,
p = 0.0013). Kinetic constants were used to estimate the
relative amounts of NSAP and PLAP. As the greater differ-
ence between the two enzymes was the resistance to tem-
perature denaturation, the stability of neutrophil AP was

recorded and analyzed considering that there was a mix-
ture of the two enzymes. Thus, remaining activity follows
the sum of equation 2 weighted by the proportion of the
two enzymes :

where kda represents the denaturation rate constant of the
PLAP component, kdb, the denaturation rate constant of
the NSAP component, and a the relative proportion of
PLAP. As the rate constants were already determined, the
fit allowed the proportion of the two isozymes to be un-
ambiguously determined.

In non pregnant women, PLAP represented 13% of the to-
tal AP activity of neutrophils. This proportion did not sig-
nificantly increase with normal pregnancy. By contrast, in
pregnancies with trisomy 21 fetus, we found a mean of
PLAP of 67%. Analysis of nine individuals revealed that

Figure 4
Inhibition of PLAP and NSAP by thiophosphate.
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Figure 5
Inhibition of PLAP and NSAP by L-p-bromotetramisole.
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PLAP proportion in neutrophils varied from 60 to 80%
for pregnancies with trisomy 21 (Table 1). The same anal-
ysis was performed using the differential sensitivity to
urea, to thiophosphate and to tetramisole and the same
result was obtained: the proportion of PLAP in neu-
trophils reached 60–80% of AP activity in pregnancies
with a trisomy 21 fetus.

Discussion
Comparison of alkaline phosphatase isoenzymes necessi-
tates their purification. As the preparation of reasonable
amounts of purified alkaline phosphatase from human
tissues is a rather complex undertaking [34], we chose to
express two isozymes in vitro. The PLAP gene had been al-
ready expressed in vitro using transfected simian cells, bac-
ulovirus and Pichia pastoris[35–38]. Production did not
significantly differ from the data reported by Davies et
al.[36], i.e. 10 U/ml. In the present study, NSAP was pro-
duced in baculovirus infected cells but expression was
weak, about 5-fold lower than the expression obtained
with PLAP. The lower stability of NSAP compared to PLAP
may contribute to this under-expression of the NSAP iso-
zyme.

The kinetics of urea denaturation distinguish the two
isoenzymes. Denaturation appeared to be monophasic in
this study for the two enzymes. This is not in contradic-
tion with the report of Hung and Chang [39] who evi-
denced a biphasic denaturation of the enzyme because in
the first denaturation phase, the enzyme remains fully ac-
tive, thus this step was not analysed in the present study.
The relative resistance of PLAP to denaturation has been
known for a long time. Here we confirm this result and we
show that the stability originates from a decrease of the
rate of the denaturation step leading to reversible non ac-
tive form. The renaturation rate constant of the two en-
zymes were not significantly different.

PLAP also appeared to be more stable than NSAP to tem-
perature denaturation as first described by McMaster et
al.[18] and since repeatedly confirmed [8]. As for urea de-
naturation, the stability seems to originate from a lower
rate of the reversible denaturation while the denaturation
rate constants leading to an irreversible denatured form
were not significantly different. As denaturation of AP de-
pends on the incubation buffer [40], we may hypothesize
that it would be possible to find conditions for which dif-
ferences in denaturation between the two enzymes are
still more pronounced. By comparison with the GCAP iso-
zyme, which differs from PLAP by only 7 aminoacids, Wa-
tanabe et al.[41] identified glutamate 429 as the main
amino-acid responsible for the relatively high stability of
PLAP.

The Km of PLAP for p-nitrophenylphosphate was slightly
lower than the Km found by Chang et al.[34]. Determina-
tion of Km with the human enzyme from the same source
(Sigma) confirmed this difference suggesting that it rather
originates from experimental conditions than from the in
vitro expression of the enzyme. L-p-bromotetramisole ap-
peared to be a potent inhibitor to AP with a slight specifi-
city for PLAP compared to NSAP. This result is in contrast
with the data available for levamisole which, although re-
lated to L-p-bromotetramisole, is known to be specific of
NSAP [8,42].

NSAP activity of neutrophils have been reported to in-
crease during pregnancy [20], and presence of a heat sta-
ble AP in neutrophils can be a useful marker for the
screening of trisomy 21 fetuses [24]. We sequenced the
neutrophil NSAP phosphatase from trisomy 21 pregnant
women and trisomy 21 children but no mutation was de-
tected indicating that the differences in alkaline phos-
phatase characteristics do not originate from a mutant
allele of the non specific alkaline phosphatase gene (un-

Table 1: AP activity (nkat/mg. protein) and Percentage of PLAP in neutrophils of pregnant women pregnant or not and bearing either 
trisomy 21 fetus or normal fetus.

Not-pregnant women Pregnant women with normal fetus Pregnant women with T21 fetus

AP activity % PLAP AP activity % PLAP AP activity % PLAP
0.065 +/- 0.008 27 1.85 +/- 0.15 5 1.28 +/- 0.12 67
0.112 +/- 0.010 5 1.35 +/- 0.10 21 0.91 +/- 0.15 62
0.086 +/- 0.012 25 2.74 +/- 0.31 13 1.44 +/- 0.13 78
0.048 +/- 0.011 30 2.05 +/- 0.25 14 1.17 +/- 0.10 68
0.150 +/- 0.014 1 1.49 +/- 0.20 22 1.09 +/- 0.14 71
0.345 +/- 0.019 0 1.68 +/- 0.12 8 1.19 +/- 0.10 72
0.097 +/- 0.015 21 1.91 +/- 0.08 15 1.35 +/- 0.14 63
0.212 +/- 0.014 0 2.01 +/- 0.11 9 0.95 +/- 0.15 69
0.320 +/- 0.020 8 1.52 +/- 0.09 22 1.26 +/- 0.08 82
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published data). This suggests that the heat stability of
neutrophil AP associated with Down's syndrome may
originate from the relative expression of PLAP and NSAP.
Our results might indicate that PLAP is expressed in neu-
trophils and its proportion increases in Down's syndrome
pregnancy. However, this conclusion is in contradiction
with the report of Peleg et al.[30] which reported no dif-
ference in AP stability in neutrophils of pregnant women
bearing a trisomy 21 fetus. Among the hypotheses which
can be proposed, loss of the PLAP component during en-
zyme preparation is possible since the authors discarded
soluble proteins. The presence of PLAP can be used in
conjunction with other markers in the serum of mothers
which are currently used to detect Down's syndrome. The
screening procedure using the serum concentration of al-
pha-fetoprotein, human chorionic gonadotropin, preg-
nancy-associated plasma protein-A and unconjugated
oestriol combined with nuchal translucency has a detec-
tion rate of 85–90 per cent with 5 per cent false positives
[43,44]. So, using the presence of PLAP in neutrophils
might improve the detection rate.

Is the presence of PLAP in neutrophils due to the actual ex-
istence of a trisomy 21 fetus ? or is the presence of PLAP
in neutrophils responsible for a predisposition of trisomy
21 pregnancy ? As neutrophils of trisomy 21 patients con-
tain only NSAP [45,46], we can reject the second hypoth-
esis. Then the presence of PLAP in neutrophils is not
genetically determined and seems to be a consequence of
the presence of a trisomy 21 fetus.

Materials and Methods
Subjects and sample isolation
Nine blood samples from unrelated women bearing a fe-
tus with trisomy 21 were examined. Patients were 36 +/- 6
years of age. Blood was collected during weeks 19 and 20
of gestation following amniocentesis and karyotyping.
Two control groups, with same number of samples from
women of the same age and at the same gestational age
were done: pregnant women with normal pregnancy and
not-pregnant women. The permission of all patients was
obtained before blood was collected. Neutrophils were
immediately isolated by the procedure of Gainer and Stin-
son [14]. Extraction of the enzyme was immediately per-
formed after blood taking and carried out in 25 mM
phosphate buffer pH7 in the presence of 2% Triton X-100.
The cells were sonicated and the homogenate spun at 10
krpm, 1 hour at 2°C. The clear supernatant was collected
and frozen at -20°C before biochemical determination for
less than three days. Preliminary experiments showed that
congelation in these conditions did not affect the phos-
phatase activity.

In vitro gene expression and protein purification
The NSAP encoding gene was cloned by RT-PCR and in-
serted into the baculovirus transfer vector pBacPaK9
(Clontech). Recombination in the virus BacPAK6 was per-
formed by standard protocols [47]. The placental AP was
produced form the recombinant baculovirus constructed
by Davis et al.[36]. Enzymes were partially purified on
DEAE columns and precipitated by acetone according to
Masuhara et al.[48].

AP assays and kinetic measurements
Kinetic measurements were performed in triplicate at
37°C, at pH 9.5 in 0.1 mol/L diethanolamine-HCl buffer
containing 45 mmol/L MgCl2, with an ionic strength
maintained constant (0.2) with NaCl, using sodium p-ni-
trophenylphosphate as substrate. The amount of reaction
product (paranitrophenate) was quantified using absorp-
tion at 400 nm (apparent ε = 18500 L.mol-1.cm-1 at pH
9.5). All the kinetics were carried out for at least 5 minutes
and the initial velocities determined by the slopes using
the software included in the Perkin Elmer UV-Visible spec-
trophotometer Lamda 15. The reversible inhibitors sodi-
um thiophosphate and L-p-bromotetramisole (2,3,5,6-
tetrahydro-6-phenylimidazo-[2,1-b]-thiazol; Fig. 1) were
incubated for five minutes with the enzyme before the ad-
dition of substrate. Data were analysed by multiple non-
linear regression using a non-linear global optimization
method based on simulated annealing (J. Czaplicki, V.
Marcel and D. Fournier, manuscript in preparation) with
equations solved according to the rapid equilibrium hy-
pothesis.

Stability of enzymes and sensitivity to inhibitors
For inactivation studies, the concentration of native en-
zyme was calculated from the residual activity after prein-
cubation of the protein either with urea or at high
temperature, without substrate. Urea denaturation was
carried out by incubating each protein with freshly 7.4 M
urea solution in 0.1 mol/L diethanolamine-HCl buffer pH
9.5, 45 mmol/L MgCl2, 0.2 ionic strength at 20°C for 30
minutes. The variation of the remaining proportion of
non-denatured enzyme with time was estimated by sam-
pling aliquots every five minutes and recording the re-

Figure 1
Inhibitors and substrate used.
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maining activity. As a control, the remaining activity was
determined by incubation of proteins without urea. Heat
inactivation used the same protocol but incubation was at
56°C, 65°C or 70°C. As the results obtained at the three
temperature are in accordance, only the results obtained
at 56°C are presented.
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