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Abstract
Background: Expression profiling holds great promise for rapid host genome functional analysis.
It is plausible that host expression profiling in an infection could serve as a universal phenotype in
virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in
HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently
HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes
associated with this viral activator.

Results: Utilizing uninfected, HIV-1 latently infected cells, and Tat expressing cells, we observed
that most of the cellular host genes in Tat expressing cells were down-regulated. The down-
regulation in Tat expressing cells is most apparent on cellular receptors that have intrinsic receptor
tyrosine kinase (RTK) activity and signal transduction members that mediate RTK function,
including Ras-Raf-MEK pathway. Co-activators of transcription, such as p300/CBP and SRC-1,
which mediate gene expression related to hormone receptor genes, were also found to be down-
regulated. Down-regulation of receptors may allow latent HIV-1 infected cells to either hide from
the immune system or avoid extracellular differentiation signals. Some of the genes that were up-
regulated included co-receptors for HIV-1 entry, translation machinery, and cell cycle regulatory
proteins.

Conclusions: We have demonstrated, through a microarray approach, that HIV-1 Tat is able to
regulate many cellular genes that are involved in cell signaling, translation and ultimately control the
host proliferative and differentiation signals.
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Background
Whole-genome expression profiling exemplified by the
development of DNA microarrays represents a major ad-
vance in genome-wide functional analysis [1,2]. In a sin-
gle assay, the transcriptional response of each gene to a
change in cellular state can be measured, whether it is a vi-
ral infection, host cell cycle changes, chemical treatment,
or genetic perturbation. Specifically, systematic approach-
es for identifying the biological functions of cellular genes
altered during these changes, such as HIV-1 infection, are
needed to ensure rapid progress in defining significant
host and viral genome sequences in directed experimenta-
tion and applications. Therefore, host cellular states can
be inferred from the expression profiles, and the notion
that the global transcriptional response constitutes a de-
tailed molecular phenotype, such as class discovery, class
prediction, drug target validation, and the classification of
tumors by expression profiling has begun to receive con-
siderable attention [3–11].

Since its discovery, much of the mainstream human im-
munodeficiency virus type 1 (HIV-1) Tat research has fo-
cused on its ability to activate the HIV-1 LTR. However, to
date, besides the transactivation activity on the HIV-1 pro-
moter, few other effects exerted by HIV-1 Tat on cellular
and viral genes has also been observed. The Tat protein
has been shown to transcriptionally repress host cellular
genes and be involved in the immunosuppression associ-
ated with viral infection. For instance, HIV-1 infection is
able to down-regulate major histocompatibility complex
type I (MHC-I) by various different viral proteins, includ-
ing Tat which represses the transcription of MHC-I, Vpu
which retains nascent MHC-I chains in the endoplasmic
reticulum, and Nef which can mediate selective internali-
zation of MHC-I molecules from the plasma membrane.
MHC class I gene expression has also been shown to be re-
duced upon infection with the wild-type LAI virus or a Tat
exon one recombinant virus [12,13].

Tat has been shown to down-regulate mannose receptor,
EDF-1, CD3-gamma, and TCR/CD3 surface receptor [14].
Tat reduces mannose receptor levels and promoter activity
in mature macrophages and dendritic cells by interfering
with the host transcriptional machinery; resulting in de-
creased levels of surface mannose receptor needed for Ag
(mannosylated albumin uptake) or pathogen capture
(Pneumocystis carinii phagocytosis), and eventual deliv-
ery to MHC class II-containing intracellular compart-
ments [15]. EDF-1, a gene down-regulated when
endothelial cells are induced to differentiate in vitro, was
shown to be down-regulated by Tat at the transcriptional
level, resulting in the inhibition of endothelial cell growth
and in the transition from a nonpolar cobblestone pheno-
type to a polar fibroblast-like phenotype [16].

When examining the in vivo effects of HIV-1 Tat protein in
the Xenopus embryo, it was found that upon injection of
synthetic Tat mRNA into zygotes, a marked delay in gas-
trulation occurred. This led to the altered specification of
the anterior-posterior axis and partial loss of the anterior
embryo structures. Mechanistically, HIV-1 Tat elicited a
general suppression of gene expression, including that of
Xbra and gsc, two early genes whose expression are re-
quired for proper gastrulation [17].

In relation to the cell cycle, Tat has also been shown to
bind to p53 and inhibit the transcription of p53 respon-
sive elements, such as the p21/Waf1 gene promoter. Con-
sequently, upon introduction of stress signals (e.g.,
gamma irradiation), HIV-1-infected cells lose their G1/S
checkpoint, enter the S-phase inappropriately, and apop-
tose [18–20]. Finally, the inhibition of Tat on translation-
al machinery has also been noted. The potential
translational inhibitory effects of the TAR RNA region is
mediated by the activation of p68 (the interferon-induced
68-kilodalton protein kinase) kinase, which was down-
regulated by Tat during productive HIV-1 infection [22].

Although the mechanism of the host cellular down-regu-
lation remains largely unknown, few reports have at-
tempted to decipher the mechanism of the observed
inhibition. For instance, the addition of Tat to PC12 cells
up-regulated the expression of the inducible cAMP early
repressor (ICER), a specific member of the cAMP-respon-
sive element modulator transcription factor family, in a
cAMP-dependent manner. In turn, ICER overexpression
abrogated the transcriptional activity of the TH promoter,
strongly suggesting ICER's involvement in Tat-mediated
inhibition of gene expression [23].

Aside from induction of ICER, Tat is capable of forming
complex (es) with a component of TFIID, TAFII250 [24]
and Tip60 [25] both of which contain histone acetyltrans-
ferase (HAT) activity. In these cases, Tat-TAFII250 and Tat-
Tip60 do not affect the transcription from the HIV-1 LTR,
but interfere with the transcription activity of cellular
genes. It is postulated that different targets of HATs by Tat
have different consequences. The interaction of Tat with
p300/CBP and P/CAF stimulates its ability to transactivate
LTR-dependent transcription, while Tat-TAFII250 or Tat-
Tip60 interactions control the transcription of cellular
genes.

Here to better understand the host response to Tat, we
have performed microarray experiments on HIV-1 infect-
ed cells expressing the Tat protein. To our surprise many
host cellular genes were down-regulated when comparing
HIV-1 infected latent cells to uninfected parental cells. Be-
cause most, if not all, latent infected cells available to date
(e.g., ACH2, U1, J1.1, OM.10) have various expression
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levels of doubly spliced viral mRNAs, including Tat, Rev,
Nef, Vpr, and other accessory proteins, we decided to per-
form the microarray in a system where Tat was constitu-
tively expressed; asking whether Tat by itself, or in the
absence of other accessory proteins, could still down-reg-
ulate host cellular genes. Consistent with latently infected
cells, we found many cellular genes to be down-regulated
in Tat expressing lymphocytes. The down-regulation is
most apparent on cellular receptors that have intrinsic re-
ceptor tyrosine kinase (RTK) activity and signal transduc-
tion members that mediate RTK function; including the
Ras-Raf-MEK pathway, and co-activators such as p300/
CBP and SRC-1, which mediate gene expression related to
hormone receptor genes. Interestingly, we also observed
up-regulation of S-phase genes, as well as ribosomal genes
involved in translation. Functionally, down-regulation of
receptors may allow latent HIV-1 infected cells to either
hide from the immune system or avoid extracellular dif-
ferentiation signals normally regulated by receptors. Up-
regulation of S-phase and translation genes may allow
speeding of cells through the S-phase and subsequent ac-
cumulation at the G2 phase, where most of the cellular
and viral translation may take place. Therefore, the pres-
ence of Tat may not only control activated transcription
on HIV-1 LTR, but also aid in the subsequent translation
of viral mRNA in the cytoplasm.

Results and discussion
Host expression profiling in a sufficiently large and di-
verse set of profiles could allow additional hypotheses to
be drawn regarding the function of genes based on the
regulatory characteristics of their own transcripts [9,11].
Here, we describe the effect of one of the most critical viral
activators, Tat, involved in HIV-1 infection and pathogen-
esis. The rationale for these experiments came from the
fact that many AIDS-infected patients who are either at
stage III (non-progressors) or under highly active antiret-
roviral therapy (HAART) treatment show some level of
doubly spliced viral messages in their infected cells. One
of these messages, Tat, has been well studied and charac-
terized, both from a viral activator standpoint, its effect on
few host cellular genes, and its effect as an extracellular cy-
tokine. However, to date there are no reported Tat gene ex-
pression analyses that detect more than a few cellular
genes.

We performed our microarray analysis first with a cDNA
blot of 588 genes, which is known to contain various re-
ceptors, cytokines, transcription factors, DNA replication
genes, and other additional well characterized genes. Fig-
ure 1A shows the results of a microarray experiment from
uninfected (CEM) and latently HIV-1 infected (ACH2)
cells. By definition, latently HIV-1 infected cells contain
integrated HIV-1 sequences in the host genome. To our
surprise, we detected many cellular genes that were down-

regulated in ACH2 cells as compared to CEM uninfected
cells. ACH2 cells, similar to many other latent HIV-1 in-
fected cells including U1, OM10.1, 8E5, and J1-1, express
multiple doubly spliced messages including Tat, Rev, Nef,
and Vpr [20]. Therefore, it would be difficult to determine
which one of these viral open reading frames was in fact
controlling the observed changes in host gene expression.

Nonetheless, when mapping all the 588 genes, we found
that 139 genes were activated above 1 fold and 449 genes
were expressed below 1 fold (Figure 1B). This is in sharp
contrast to latent HTLV-1 infected Tax expressing cells,
where more than two-thirds of the same set of genes were
activated and scored above one [26]. Some of the genes
from HIV-1 latent cells were further processed as control
experiments using Northern blot analysis. As can be seen
in Figure 1C, and consistent with previously published re-
ports, p21/Waf1 [19–21] was down-regulated and C-myc
and pro-thymosin-α were up-regulated in HIV-1 latent
cells. Collectively, these experiments point toward host
cellular changes in the presence of doubly spliced HIV-1
RNA; however they do not explain whether Tat or other vi-
ral genes are responsible for the observed cellular changes.

Therefore, we focused our attention on HIV-1 Tat protein,
since Tat could readily be detected in immunoprecipita-
tions from 35S labeled latent ACH2, U1, OM10.1, 8E5,
and J1-1 cells (20, data not shown). We utilized a well-
characterized system of H9 and H9/Tat cell lines for our
next set of microarray experiments and increased our rep-
ertoire of the known cDNA genes from 588 to 2400. This
was accomplished by using glass slides which were print-
ed with cDNAs of 500 bases or higher, and could be used
in hybridization with two different sets of RNAs labeled
with either Tyramide linked Cy-3 or Cy-5.

Results of such an experiment is shown in Figure 2, where
H9 cytoplasmic Poly A+ selected RNA was labeled with
Cy-5 and the H9/Tat RNA with Cy-3 prior to hybridiza-
tion. When all the 2400 genes were plotted, some 695
genes were shown to be up-regulated above one fold and
1705 genes were down-regulated below one fold (right
hand graphs). This was consistent with the results ob-
tained from the ACH2 microarray experiment, where
more than 2/3 of the cellular genes were down-regulated
by one or more of the doubly spliced genes. We then arbi-
trarily chose a cut-off of three fold change for our next set
of analyses. This was mainly because many of our in
house microarray experiments with HIV-1, HTLV-1, and
HHV-8 infection has shown a reproducible correlation be-
tween protein and mRNA levels when gene expression lev-
els were up- or down-regulated by more than three fold
(data not shown). A collection of all the genes above and
below three fold are shown in Tables 1, 2, and 3. Based on
existing literature, we categorized all of these genes into
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Figure 1
Gene expression analysis of uninfected and HIV-1 infected cells. A) Both CEM (uninfected) and ACH2 (latently HIV-1 infected) 
cells were grown to mid-log phase of growth and processed for RNA isolation. Total RNA was labeled with 32P-ATP and 
hybridized to human cDNA filters (Clontech, 588 genes). Blots were hybridized overnight, washed the next day, and exposed 
to a PhosphorImager cassette. B) Same as in panel A, except all the 588 genes were plotted as fold change vs. gene index (indi-
vidual genes). Examples of three genes such as prothymosin-α, C-myc, and p21/Waf1, is shown on the diagram. C) Northern 
blot analysis of prothymosin-α, C-myc, p21/Waf1 and ubiquitin using 10 µg of total RNA, separated on 0.8% formaldehyde gel, 
and probed with 40 mer anti-sense oligos against respective genes. Bottom of panel C, last insert shows RNA ethidium bro-
mide stain from CEM and ACH2 cells.
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known pathways. For instance, genes in Table 1 belong to
receptors, co-receptors, and co-activators, genes in Table 2
are all the translation related factors, and those in Table 3
indicate genes that are involved in cytoskeleton, signal
transduction, cell cycle, DNA repair, transcription, and
chromatin remodeling processes. All genes have a number
ratio of Cy3 to Cy5 (C3/C5) indicating a ratio of mRNA
from H9/Tat over H9 cells. A brief name description and
gene ID accession number is given to the right hand side
of each ratio. All genes are divided into up (3 fold and
higher) and down (3 fold and lower) regulated in Tat ex-
pressing cells. Below is a brief description of genes that we,
along with the existing literature, were able to correlate
with proliferative and/or differentiation signals.

Receptor family members
It has long been known that infection by HIV-1 common-
ly leads to the down-regulation and the disappearance of
CD4 receptors from the plasma membrane, a phenome-
non referred to as receptor down-modulation. This, in
turn, renders cells refractory to subsequent infection by
the same or other viruses that use the CD4 receptor for en-
try; thus creating a state of super-infection immunity. Re-
sults in Table 1 indicate that although few receptor genes
were up-regulated, most of the cellular receptors in gener-
al, were down-regulated in the presence of the Tat protein.
Most of these receptors or membranous proteins were in-
itially discovered from immune or neuronal cells, hence
they were given names related to the immune or nervous
system. For instance, mRNA for the neuropeptide Y-like

Figure 2
Gene expression analysis from Tat expressing cells. Both H9 and H9/Tat cells were grown to mid-log phase of growth, proc-
essed for RNA preparation, and labeled with Tyramide linked Cy-5 (H9) or Cy-3 (H9/TAT). Labeled RNAs were hybridized 
simultaneously to a glass slide containing 2400 known cDNA genes (NEN Inc.). All genes were plotted similar to Figure 1 and 
genes above & below 1 fold change were plotted (on the right hand side) to show activation and suppression of all genes.
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Table 1: Receptors

Ratio (C3/C5) Gene ID

Receptors
up

12.46 Beta 2-microglobulin. [Acc# S82300]
9.73 coxsackievirus and adenovirus receptor (CAR) protein. [Acc# Y07593]
8.5 SSR2 mRNA for beta-signal sequence receptor. [Acc# D37991]
6.29 Androgen receptor associated protein 24 (ARA24). [Acc# AF052578]
5.84 Beta 2- mu, beta 2-microglobulin. [Acc# S54761]
5.25 mRNA for neuropeptide Y-like receptor. [Acc# X71635]
4.23 mRNA for GABA-A receptor, gamma 2 subunit. [Acc# X15376]
4.06 67 kda laminin receptor. [Acc# S37431]

down
0.3 mRNA for receptor of retinoic acid. [Acc# X06614]
0.3 mRNA for key subunit of N-methyl-D-aspartate receptor. [Acc# D13515]
0.3 Endothelial cell protein C/APC receptor (EPCR). [Acc# L35545]
0.28 Receptor protein-tyrosine kinase (HEK8). [Acc# L36645]
0.28 Cation-dependent mannose 6-phosphate-specific receptor. [Acc# M16985]
0.28 GM-CSF receptor (GM-CSF receptor). [Acc# M73832]
0.27 Protein tyrosine phosphatase receptor pi (PTPRP). [Acc# U81561]
0.26 N-methyl-D-aspartate receptor 2A subunit precursor. [Acc# U90277]
0.26 Serotonin 1D receptor (5-HT1D~). [Acc# M81590]
0.25 mRNA for steroid receptor coactivator 1e. [Acc# AJ000882]
0.25 Insulin receptor substrate-1. [Acc# S62539]
0.25 mRNA for LDL-receptor related protein. [Acc# X13916]
0.24 Transforming growth factor-beta type III receptor (TGF-beta). [Acc# L07594]
0.24 Glucocorticoid receptor repression factor 1 (GRF-1). [Acc# M73077]
0.24 Leukocyte-associated Ig-like receptor-1 (LAIR-1). [Acc# AF013249]
0.24 Putative EPH-related PTK receptor ligand LERK-8 (Eplg8). [Acc# U66406]
0.23 TRAIL receptor 2. [Acc# AF016266]
0.23 Steroid receptor coactivator-1. [Acc# U90661]
0.22 mRNA for apolipoprotein E receptor 2. [Acc# D50678]
0.22 Leptin receptor splice variant form 12.1. [Acc# U66496]
0.21 vasopressin activated calcium mobilizing receptor-like. [Acc# X81882]
0.21 Insulin receptor. [Acc# M10051]
0.21 docking protein (signal recognition particle receptor). [Acc# X06272]
0.21 mRNA for fibronectin receptor alpha subunit. [Acc# X06256]
0.21 GRB2 (EGFRBP-GRB2) mRNA sequence. [Acc# M96995]
0.21 mRNA for urokinase plasminogen activator receptor. [Acc# X74039]
0.2 Glycine receptor beta subunit (GLRB). [Acc# U33267]
0.19 mRNA for endothelin receptor (ETR). [Acc# D90402]
0.19 mRNA for A1 adenosine receptor. [Acc# X68485]
0.19 mRNA for EHK-1 receptor tyrosine kinase. [Acc# X95425]
0.18 alpha-2-macroglobulin receptor-associated protein. [Acc# M63959]
0.18 Glutamate receptor type 1 (HBGR1). [Acc# M81886]
0.18 Sigma receptor. [Acc# U75283]
0.18 mRNA for type 1 inositol 1,4,5-trisphosphate receptor. [Acc# D26070]
0.18 GABA-benzodiazepine receptor alpha-5-subunit (GABRA5). [Acc# L08485]
0.18 Glutamate receptor flop isoform (GluR3-flop). [Acc# U10302]
0.18 mRNA for insuline-like growth factor II receptor. [Acc# Y00285]
0.17 N-methyl-D-aspartate receptor subunit 2A (hNR2A). [Acc# U09002]
0.17 mRNA for type 3 inositol 1,4,5-trisphosphate receptor. [Acc# D26351]
0.17 Beta-adrenergic receptor kinase 1. [Acc# M80776]
0.17 Receptor tyrosine kinase (DTK). [Acc# U18934]
0.16 mRNA for brain ryanodine receptor. [Acc# AB001025]
0.15 Nicotinic acetylcholine receptor aloha3 subunit precursor. [Acc# U62432]
0.15 mRNA for steroid hormone receptor hERR1. [Acc# X51416]
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0.15 mRNA for leukotriene b4 receptor. [Acc# D89078]
0.15 IgG Fc receptor hFcRn. [Acc# U12255]
0.14 Putative endothelin receptor type B-like protein. [Acc# U87460]
0.14 Peroxisome proliferator activated receptor. [Acc# L07592]
0.13 mRNA for a presumptive KDEL receptor. [Acc# X55885]
0.13 GM-CSF receptor. [Acc# M64445]
0.11 Hap mRNA encoding a DNA-binding hormone receptor. [Acc# Y00291]
0.09 mRNA for leukemia inhibitory factor (LIF) receptor. [Acc# X61615]
0.09 mRNA for metabotropic glutamate receptor subtype 5a. [Acc# D28538]

Table 2: Translation Factors

Ratio (C3/C5) Gene ID

Translation
up

10.32 mRNA for ribosomal protein L26. [Acc# X69392]
9.69 mRNA for ribosomal protein L6. [Acc# X69391]
8.83 mRNA for ribosomal protein S12. [Acc# X53505]
8.36 mRNA for ribosomal protein L31. [Acc# X15940]
8.35 Ribosomal protein S13 (RPS13). [Acc# L01124]
7.99 mRNA for ribosomal protein L35a. [Acc# X52966]
7.97 Ribosomal protein L7a (surf 3) large subunit. [Acc# M36072]
7.56 Ribosomal protein S17. [Acc# M13932]
7.51 Translation initiation factor eIF3 p40 subunit. [Acc# U54559]
7.48 Ribosomal protein L5. [Acc# U14966]
7.2 Translation initiation factor eIF3 p66 subunit. [Acc# U54558]
6.91 mRNA for translationally controlled tumor protein. [Acc# X16064]
6.78 Gene for ribosomal protein L38. [Acc# Z26876]
6.62 Ribosomal protein S24 mRNA. [Acc# M31520]
6.53 mRNA for ribosomal protein. [Acc# D23660]
6.47 Ribosomal protein L41. [Acc# AF026844]
6.35 S3 ribosomal protein. [Acc# S42658]
6.29 Elongation factor 1-alpha 1 (PTI-1). [Acc# L41490]
5.99 Ribosomal protein S20 (RPS20). [Acc# L06498]
5.98 Ribosomal protein. [Acc# M15661]
5.97 mRNA for ribosomal protein L39. [Acc# D79205]
5.92 Ribosomal protein L10. [Acc# L25899]
5.8 Ribosomal protein L28. [Acc# U14969]
5.72 mRNA for 26S proteasome subunit p97. [Acc# D78151]

up
5.7 Translation initiation factor 3 47 kDa subunit. [Acc# U94855]
5.53 Ribosomal protein S6. [Acc# M20020]
5.27 Ribosomal protein L27a. [Acc# U14968]
5.27 Ribosomal protein L29 (humrpl29). [Acc# U10248]
5.21 mRNA for eukaryotic initiation factor 4AI. [Acc# D13748]
5.2 mRNA for polyA binding protein. [Acc# Y00345]
5.08 Ribosomal protein S9. [Acc# U14971]
5.06 Ribosomal protein S5. [Acc# U14970]
4.87 mRNA for elongation factor-1-gamma. [Acc# Z11531]
4.82 mRNA for HL23 ribosomal protein homologue. [Acc# X55954]
4.4 mRNA for ribosomal protein S11. [Acc# X06617]
4.34 Acidic ribosomal phosphoprotein P0. [Acc# M17885]
3.94 mRNA for ribosomal protein L8. [Acc# Z28407]
3.92 Ribosomal protein L3-like. [Acc# U65581]

Table 1: Receptors (Continued)
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3.72 Acidic ribosomal phosphoprotein P1. [Acc# M17886]
3.44 mRNA for ribosomal protein (similar to yeast S24). [Acc# X62691]
3.1 mRNA for ribosomal protein L7. [Acc# X52967]

down
0.29 Ribosomal protein L34 (RPL34). [Acc# L38941]
0.28 mRNA for ribosomal protein L32. [Acc# X03342]
0.17 mRNA for ribosomal protein L19. [Acc# X63527]
0.16 Translation initiation factor 5 (eIF5). [Acc# U49436]
0.16 mRNA for eIF-2B alpha subunit. [Acc# X95648]

Table 3: 

Ratio (C3/C5) Gene ID
Signal Transduction

up
8.82 ras-related small GTP binding protein Rab5 (rab5). [Acc# U18420]

down
0.29 MAP kinase-activating death domain protein (MADD). [Acc# U77352]
0.27 MAP kinase kinase kinase (MTK1). [Acc# AF002715]
0.19 p38 gamma MAP kinase. [Acc# U66243]
0.18 ERK3 protein kinase. [Acc# L77964]
0.14 ERK1 mRNA for protein serine/threonine kinase. [Acc# X60188]
0.14 mRNA for TRAF5. [Acc# AB000509]

Thymosin
up

5.16 Thymosin beta-10. [Acc# S54005]
5.09 Prothymosin alpha mRNA (ProT-alpha). [Acc# M26708]
4.38 Thymosin beta-10. [Acc# M20259]
4.15 m-RNA for NB Thymosin beta. [Acc# D82345]
4.1 Parathymosin. [Acc# M24398]
3.54 Thymosin beta-4. [Acc# M17733]
2.73 Prothymosin alpha. [Acc# M14630]

Cell Cycle
up

9.62 Cyclin protein gene. [Acc# M15796]
8.88 14-3-3 epsilon. [Acc# U54778]
8.04 mRNA for proliferation-associated gene (pag). [Acc# X67951]
7.8 poly(ADP-ribose) polymerase. [Acc# M18112]
7.46 p18 protein. [Acc# J04991]
6.46 hCDC37 homolog, [Acc# U43077]
5.12 hCDC10, CDC10 homolog. [Acc# S72008]
2.39 hCDC2, [Acc# X05360]

down
0.24 mRNA for putative serine/threonine protein kinase. [Acc# Y10032]
0.22 Cam Kinase I. [Acc# L41816]
0.2 Checkpoint suppressor 1 [Acc# U68723]
0.16 PLSTIRE for serine/threonine protein kinase. [Acc# X66365]
0.15 PCTAIRE-2 for serine/threonine protein kinase. [Acc# X66360]

DNA Repair/Replication
up

9.62 PCNA [Acc# M15796]
7.8 poly(ADP-ribose) polymerase. [Acc# M18112]
3.85 Lupus p70 (Ku) autoantigen protein. [Acc# J04611]
2.56 Excision repair protein (ERCC1). [Acc# M13194]
3.1 DNA-PKcs [Acc# U34994]

down
0.25 Rad51C (RAD51C). [Acc# AF029669]
0.23 DNA repair protein XRCC9 (XRCC9). [Acc# U70310]
0.21 DNA mismatch repair protein homolog (hMLH1). [Acc# U07343]

Table 2: Translation Factors (Continued)
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receptor (Acc# X71635), which was up-regulated in Tat
expressing cells, was initially discovered as a G-protein
coupled neuropeptide Y receptor, and later found to be
homologous to the co-receptor CCR5 needed for HIV-1
infection of monocyte/macrophage cells. Therefore, most

of the receptors listed in Table 1 may in fact be expressed
in various tissues and have multiple functions.

Consistent with our microarray results on CCR5 up-regu-
lation, experiments performed in peripheral blood mono-

0.19 Topoisomerase I. [Acc# J03250]
0.18 RAD51D. [Acc# AF034956]
0.13 DNA replication licensing factor (huMCM2). [Acc# D83987]

Transcription
Pol I

up
3.19 Transcription factor SL1. [Acc# L39059]

Pol II
up

7.17 100 kDa coactivator. [Acc# U22055]
6.42 RNA polymerase II elongation factor-like protein. [Acc# Z47087]
3.34 TFIID subunit TAFII55 (TAFII55). [Acc# U18062]
3.1 mRNA for TBP associated factor, TAFII68. [Acc# X98893]

down
0.3 TFIIB related factor hBRF (HBRF). [Acc# U75276]
0.29 mRNA for transcriptional activator hSNF2b. [Acc# D26156]
0.27 mRNA for RNA polymerase II 140 kDa subunit. [Acc# X63563]
0.25 RNA polymerase II. [Acc# L37127]
0.22 p300 protein. [Acc# U01877]
0.16 Rac3 (RAC3). [Acc# AF008591]
0.14 RNA polymerase II elongation factor SIII. [Acc# L34587]

Pol III
down

0.13 TFIIIC Box B-binding subunit. [Acc# U02619]
0.12 Transcription factor TFIIIB (hTFIIIB90). [Acc# U28838]

Chromatin Remodeling
up

4.93 NAP (nucleosome assembly protein). [Acc# M86667]
4.83 RNA polymerase transcriptional mediator (h-MED6). [Acc# U78082]
4.39 sin3 associated polypeptide p18 (SAP18). [Acc# U96915]
3.81 mRNA for nucleosome assembly protein. [Acc# D50370]

down
0.21 SWI/SNF complex 170 KDa subunit (BAF170). [Acc# U66616]
0.21 Chromatin assembly factor-I p150 subunit. [Acc# U20979]
0.19 SWI/SNF complex 60 KDa subunit (BAF60c). [Acc# U66619]

DNA Binding
up

10.17 mRNA for DNA binding protein TAXREB67. [Acc# D90209]
5.76 Pur (pur-alpha). [Acc# M96684]
5.25 Nuclear factor NF45. [Acc# U10323]
5.28 mRNA for transcription factor AREB6. [Acc# D15050]
7.17 Insulin-like growth factor binding protein 2 (IGFBP2). [Acc# M35410]
6.33 Non-histone chromosomal protein HMG-17. [Acc# M12623]

down
0.27 Kruppel related zinc finger protein (HTF10). [Acc# L11672]
0.26 Transcription factor ETR101. [Acc# M62831]
0.21 Helix-loop-helix protein (Id-2). [Acc# M97796]
0.2 Transcription factor IL-4 Stat. [Acc# U16031]
0.2 Activating transcription factor 3 (ATF3). [Acc# L19871]
0.16 ATF family member ATF6 (ATF6). [Acc# AF005887]
0.16 Paired box gene (PAX6) homologue. [Acc# M93650]
0.17 MADS/MEF2-family transcription factor (MEF2C). [Acc# L08895]

Table 3:  (Continued)
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nuclear cells (PBMCs) with soluble Tat has shown
selective entry and replication of CCR5 virus into cells
[27,28]. Up-regulation of HIV-1 coreceptor by Tat has also
been reported, where a synthetic Tat protein that was im-
mobilized on a solid substrate, up-regulated the surface
expression of the chemokine receptors in purified popula-
tions of primary resting CD4+ T cells. Also, a similar result
was seen from Tat protein actively released by HIV-1
infected cells, implying a potentially important role for
extracellular Tat in rendering the bystander CD4+ T cells
more susceptible to infection [28].

We therefore tested whether H9/Tat cells, which showed
an increase in CCR5 expression, could in fact allow better
entry and infection of the CCR5 (R5) virus into cells. Fig-
ure 3A shows the result of such an experiment, where H9/
Tat cells allowed a better replication profile of the R5 than
the CXCR4 (X4) virus. The increase in viral titer peaked af-
ter some 18 days of infection with the R5 virus, further im-
plying that the CCR5 co-receptor allowed a better
selection of R5 virus in Tat expressing cells.

Another example of co-receptors with multiple functions
is the leukotriene family member B4, which was down-
regulated in Tat expressing cells (Acc# D89078, Table 1).
The cysteinyl leukotrienes (CysLT), LTC, LTD, and LTE,
were first shown to be essential mediators in asthma [29].
However, when the mouse leukotriene B4 receptor (m-
BLTR) gene, was cloned it was shown to have significant
sequence homology with chemokine receptors (CCR5
and CXCR4), co-receptors for many different HIV-1 clades
[30]. Along the same lines, when cells were infected with
10 primary clinical isolates of HIV-1, leukotriene B4 re-
ceptor was primarily utilized for efficient entry into cells
which were mainly of the syncytium-inducing phenotype
[31]. Therefore, up-regulation of neuropeptide Y-like re-
ceptor and down-regulation of leukotriene B4 receptor in
Tat expressing cells indicates a selective advantage of one
class of virus (CCR5) over another (CXCR4).

Other examples of consistency between our microarray re-
sults on receptors and the HIV-1 Tat literature, include the
down-regulation of gene expression in uPAR (Acc#
X74039), IP3 (Acc# D26070, D26351), Glu R flop (Acc#
U10302), PPAR (Acc# L07592), alpha-2 macroglobulin
receptor protein (Acc# M63959), and receptor tyrosine ki-
nase (Acc# L36645, U66406) genes.

The transmembranous urokinase-type plasminogen acti-
vator receptor (uPAR; CD87) focuses the formation of ac-
tive plasmin at the cell surface, thus enhancing directional
extracellular proteolysis. Interestingly, the promoter activ-
ity of the CD87 gene was shown to decline after infection
[32], implying that post integration of HIV-1 may in fact
down-regulate CD87 gene expression. Similarly, inositol

1,4,5-trisphosphate receptors (IP3R) are intracellular cal-
cium release channels involved in diverse signaling
pathways and are required for the activation of T lym-
phocytes [33]. Tat (also implicated as a neurotoxin) has
been shown to release calcium from inositol 1,4, 5-tri-
sphosphate (IP3) receptor-regulated stores in neurons
and astrocytes causing premature apoptosis [34]. Down-
regulation of IP3 may therefore contribute to viral latency
and maintenance of an anti-apoptotic state in cells.

HIV-1 infection can cause extensive neuronal loss and
clinically, a severe dementia. The cause of the
neurotoxicity remains unclear as neurons are not infected,
but the disturbance of glutamate-linked calcium entry has
been implicated. It has been shown that HIV-infected
brain has a decrease of mRNA and protein of the GluR-A
flop subtype of alpha-amino-3-hydroxy-5-methyl-4-isox-
azole propionic acid (AMPA) glutamate receptor in cere-
bellar Purkinje cells. The observed disturbance of AMPA
receptors may contribute to the neurotoxic process in oth-
er vulnerable brain regions and clinically to the develop-
ment of dementia [35]. Interestingly, in a mouse model
AMPA receptors in the cortex, striatum, hippocampus,
and cerebellum declined by 29–50% as early as 8 weeks
post-retroviral inoculation. Thus, the reduction in AMPA
receptor density may contribute to the development of the
cognitive abnormalities associated with HIV-1 infection
[36].

Finally, patients with AIDS who are receiving therapy with
HIV-1 protease inhibitors have been reported to be afflict-
ed with a syndrome characterized by lipodystrophy (fat
redistribution favoring the accumulation of abdominal
and cervical adipose tissue), hyperlipidemia, and insulin
resistance. Potential mechanisms for altered adipocyte
function include, direct binding to PPARgamma or inhi-
bition of transcription of PPARgamma promoter [37]. The
lipodystrophy syndrome may be a result of the inhibition
of 2 proteins involved in lipid metabolism that have sig-
nificant homology to the catalytic site of HIV proteases;
namely cytoplasmic retinoic acid binding protein type 1
and low density lipoprotein-receptor-related protein [38].
An additional mechanism of PPAR down-regulation may
be related to Tat expression in latent cells.

Translation associated factors
Viruses have evolved a remarkable variety of strategies to
modulate the host cell translation apparatus with the aim
of optimizing viral mRNA translation and replication. For
instance, viruses including Herpes simplex virus type 1
(HSV-1) have been known to induce severe alterations of
the host translational apparatus, including the up-regula-
tion of ribosomal proteins and the progressive association
of several nonribosomal proteins, such as VP19C, VP26,
and the poly(A)-binding protein 1 (PAB1P) to ribosomes
Page 10 of 22
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Figure 3
Functional and physical confirmation of few genes from Tat expressing cells. A) Infection of mono- and T-tropic viruses into 
Tat expressing cells. Both HXB-2 and BaL strains of HIV-1 were infected into H9 and H9/TAT cells. Supernatants were col-
lected every 3 days and further processed for p24 gag ELISA assays. B) Western blot analysis from H9 and H9/TAT expressing 
cells using co-activators (SRC-1), DNA damage (DNA-PK), activator (p300), and signal transduction (Ras, RAF, and MAPK) 
antibodies. TBP stands for TATA binding protein, which served as positive control in western blots. C) Western blot analysis 
from CEM (uninfected T-cell), ACH2 (infected T-cell), U937 (uninfected promonocytic), U1 (infected promonocytic), and 
PBMCs treated with purified Tat wild type or K41A mutant (100 ng/ml) proteins. Fifty microgram of whole cells lysates were 
processed for western blots with anti-DNA-PK, p300, RAF, and TBP antibodies.
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[39]. In the case of HIV-1, approximately one infectious
HIV-1 genome in an infected cell could be transcribed and
translated into 50,000 to 100,000 physical particles [40].
This poses an immense challenge for the virus to be able
to transcribe, splice, transport, and translate its RNA into
fully packaged virions in a timely fashion. Therefore, it
would be advantageous for the virus to set the stage for
each successive step necessary for viral progeny formation.
One such event is Tat's ability to control genes that aid in
translational machinery. As seen in Table 2, many of the
critical components of a functional ribosome, including
large subunits L 3, 6, 26, 31, 38, and 41, as well as S 6, 12,
20, and 24, and many of the translation initiation factors
are up-regulated by Tat. This would imply that Tat up-reg-
ulates many ribosomal genes that may be necessary to
produce functional ribosomes needed for viral mRNA
translation. Therefore, interfering with translation could
provide a new strategy for anti-HIV treatment. Along these
lines, when the aminogylcosides (kanamycin, hygromy-
cin B, paromycin and neomycin) due to their ability to in-
hibit protein synthesis by affecting ribosomal fidelity, or
puromycin because of its competing ability with tRNAs
for binding on the large ribosomal subunit, or cyclohex-
imide which inhibit the large ribosomal subunit by pre-
venting ribosomal movement along the mRNA, were used
in active HIV-1 infection, it was found that both cyclohex-
imide and puromycin produced the greatest decrease in
HIV-1 inhibition, presumably by inhibiting the large sub-
unit of the ribosome [41].

Translation of HIV-1 RNAs pose a challenge since they all
contain a TAR sequence at their 5' end. The Tat-responsive
region (TAR) of HIV-1 exhibits a trans-inhibitory effect on
translation by activating the interferon-induced 68-kilo-
dalton protein kinase. Productive infection by HIV-1 has
been shown to result in a significant decrease in the
amount of cellular p68 kinase. The steady-state amount of
p68 kinase was found to be reduced in cells stably express-
ing Tat. Thus, the potential translational inhibitory effects
of the TAR RNA region, mediated by activation of p68 ki-
nase, may be down-regulated by Tat during activation of
the latent virus [22]. Along these lines, a Tat peptide
antagonist, which bound specifically to TAR RNA and
competed with Tat for binding, reduced Tat-dependent
translation [42].

Finally, upregulation of translation genes in Tat express-
ing cells is specially intriguing in light of the recent discov-
ery of internal ribosome entry sites (IRESs) in HIV-1 gag
ORF [43]. IRESs are thought to promote initiation of
translation by directly binding to ribosomes, in a manner
independent of the mRNA cap or of scanning through up-
stream sequences. Since, the TAR is located at the 5' end of
all HIV-1 RNA transcripts and the presence of secondary
structure at or near the 5' end of RNAs reduces the acces-

sibility of the 5' cap to eIF4F, it is thought that this feature
of HIV-1 mRNAs can inhibit their cap-dependent transla-
tion [44–46]. Therefore, a possible function of the HIV-1
gag IRES might be to serve as a mechanism to bypass the
structural barriers to cap-dependent translation by recruit-
ing ribosomes easily and directly to the gag ORFs. IRES en-
tirely contained within a translated ORF has been shown
in the MMLV gag [47], and host mRNA encoding
p110PITSLRE and p58PITSLRE[48]. Along these lines, cap-
dependent translation may be cell cycle regulated, espe-
cially when cells are arrested at the G2 phase of the cell cy-
cle, where the cap-dependent translation of most cellular
host cell mRNAs is inhibited [49–51].

Modulation of signal transduction pathway
Results in Table 3 indicate that many seemingly different
pathways are being regulated by Tat. However, the signal
transduction pathway, MAPK, has been shown to control
and be upstream of DNA-replication, transcription, and
cell cycle pathways [52–54]. The mitogen-activated pro-
tein kinase (MAPK) pathway, consisting of the MAP ki-
nase kinases (MKKs) 1 and 2, and extracellular signal-
regulated kinases (ERKs) 1 and 2, which have been impli-
cated in diverse cellular processes including proliferation,
transformation, and cell differentiation [53]. The MAP ki-
nase (MAPK) pathway has emerged as a crucial route be-
tween membrane-bound Ras and the nucleus. This MAPK
pathway encompasses a cascade of phosphorylation
events involving three key kinases, namely Raf, MEK
(MAP kinase kinase) and ERK (MAP kinase). The MAPK
pathway controls ERKs 1 and 2, c-Jun N-terminal kinase
(JNK), and p38. These signaling pathways in turn, activate
a variety of transcription factors including NF-kappaB
(p50/p65), AP-1 (c-Fos/c-Jun), and CREB phosphoryla-
tion, which in turn coordinate the induction of many
genes encoding inflammatory mediators.

Cytokine receptors such as IL-3, GM-CSF, and the interfer-
ons transmit their regulatory signals primarily by the re-
ceptor-associated Jak family of tyrosine kinases, and
activate STAT transcription factors. Activated STAT5 pro-
teins are detected in reduced levels in lymphocytes
recovered from HIV-infected patients and immunocom-
promised mice. Both of these types of receptor signaling
pathways have recently been shown to interact with ser-
ine/threonine kinases such as MAP kinases. A common
intermediate pathway initiating from receptors to the nu-
cleus is the Ras/Raf/MEK/ERK (MAPK) cascade, which can
result in the phosphorylation and activation of additional
downstream kinases and transcription factors such as
p90Rsk, CREB, Elk, and Egr-1 [55,56]. Therefore, it is in-
triguing that Tat expressing cells show down-regulation of
MAPK components (Table 3, Figure 3B and 3C), essential
mediators between receptors and nuclear transcription
factors. This would imply that latently infected cells that
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express Tat (doubly spliced RNA) and not the whole virus
(all three classes of the RNA), can control signal
transduction related to membrane and transcriptional sig-
naling (Figure 6).

Interestingly, Tat, through the RGD motif, which controls
integrin-based cell signaling, has been reported to
mediate the activity of phosphotyrosine phosphatase(s).
This in turn which would lead to a decrease in the levels
of phosphotyrosine-containing proteins such as ERK-2/
p42MAPK kinases [57]. Cysteine-rich and basic Tat pep-
tides have been shown to inhibit VEGF-induced ERK acti-
vation and mitogenesis. These peptides also inhibited
proliferation, angiogenesis, and ERK activation induced
by basic fibroblast growth factor with similar potency and
efficacy [58]. Consistent with this model, it has been
shown that treatment of neural cells with culture superna-
tants from HAART-treated subjects, which presumably
contain extracellular Tat, resulted in down-regulation of
the JNK, AKT, and ERK kinases [59].

Finally, activation of MAPKs has been shown to activate
the singly spliced and unspliced (genomic) latent HIV-1
virus. For instance, the signal transduction pathways that
regulate the switch from latent to productive infection
have been linked to MAPK. The induction of latent HIV-1
expression has been shown to be inhibited by PD98059
and U0126, specific inhibitors of MAPK activation. The
MAPK acts by stimulating AP-1 and a subsequent physical
and functional interaction of AP-1 with NF-κB, resulting
in a complex that synergistically transactivates the HIV-1
[60]. At the level of infection and entry, the activation of
MAPK through the Ras/Raf/MEK (MAPK kinase) signaling
pathway enhances the infectivity of HIV-1 virions. Virus
infectivity can be enhanced by treatment of cells with
MAPK stimulators, such as serum and phorbol myristate
acetate, as well as by coexpression of constitutively activat-
ed Ras, Raf, or MEK in the absence of extracellular stimu-
lation [61]. Also, following infection, efficient
disengagement of the reverse transcription complex from
the cell membrane and subsequent nuclear translocation,
requires phosphorylation of the reverse transcription
complex components by ERK/MAPK; demonstrating a
critical regulation of an early step in HIV-1 infection by
the host cell MAPK signal transduction pathway [62].
Therefore, Tat down-regulation of the MAPK pathway in
latent cells implies that much of the host signal transduc-
tions connected to activation are down-regulated, and at
the same time, these cells may be refractory to subsequent
infection by other viruses.

Thymosin family members, and cell cycle
Prothymosin α (ProTα) belongs to the α-Thymosin fami-
ly which comprises different polypeptides widely distrib-
uted within animal tissues. Although its role has remained

controversial, it is involved in the increase of immediate
early genes such as c-myc [63], which is upstream of cyclin
D synthesis and necessary for cell division [64]. In hu-
mans, ProTα is coded by a gene family of six members.
One of them contains introns, exons and classic regulato-
ry signals, while the remaining five are intronless genes
[59] located on chromosome 2 [66]. There are two mRNA
transcripts, which arise in a ratio of 9:1 (shorter/longer
form), where only the long transcript is regulated by extra-
cellular signals.

It has been demonstrated that malignant tissues with ac-
celerated cell cycle show higher levels of ProTα expression
than normal or surrounding healthy tissues [67]. ProTα
was shown as a marker for breast cancer [68], hepatocar-
cinoma [69], and plasma levels of its derivative Tα1 been
proposed as a marker for the prognosis of lung cancer
[70]. In ligand blotting assays, ProTα bound only to chro-
matin pools and nuclear fractions where histone H1 was
present [71,72]. The analysis of the interaction of ProTα
with H1-containing chromatin suggests a putative role for
ProTα in the fine-tuning of the stoichiometry and/or
mode of interaction of H1 with chromatin [73]. Interest-
ingly, HL-60 cells overexpressing ProTα show an enhance-
ment of accessibility of micrococcal nuclease to
chromatin, implying relaxed chromatin structure for en-
hanced cell cycle gene expression [74].

A broad study using several mononuclear and fibroblastic
cell lines has shown that ProTα mRNA accumulation is
cell cycle phase-dependent. In the U937 monocytic cell
line, ProTα mRNA peaked at the end of S/G2 phase and
fell towards the entry into the new G1 phase. More prom-
inent mRNA regulation was found in the fibroblastic cell
lines CV1 and NIH3T3, with peak mRNA levels at the end
of S-phase. In all cases the expression pattern coincided
with that of cyclin B and Cdc2/cyclin B activation [75].

It is interesting to note that Cdc2 (Acc# X05360), Cdc10
homolog (Acc# S72008), and Cdc37 (Acc# U43077) were
all up-regulated in Tat expressing cells. Cdc2, a catalytic
subunit of cyclin-dependent kinases, is required for both
the G1-to-S and G2-to-M transitions. In the fission yeast
Schizosaccharomyces pombe, the execution of Start re-
quires the activity of the Cdc2 protein kinase and the
Cdc10/Sct1 transcription complex. The loss of any of
these genes leads to G1 arrest [69].

Cdc37 encodes a 50-kDa protein that targets intrinsically
unstable oncoprotein kinases including Cdk4, Raf-1, and
v-src to the molecular chaperone Hsp90, an interaction
that is thought to be important for the establishment of
signaling pathways. Cdc37 expression may not only be re-
quired to support proliferation in cells that are develop-
mentally programmed to proliferate, but may also be
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required in cells that are inappropriately induced to initi-
ate proliferation by oncogenes. For instance, MMTV-
Cdc37 transgenic mice develop mammary gland tumors
at a rate comparable to that observed previously in
MMTV-cyclin D1 mice, indicating that Cdc37 can func-
tion as an oncogene in mice and suggests that the estab-
lishment of protein kinase pathways mediated by Cdc37-
Hsp90 can be a rate-limiting event in transformation [76].
Also, analysis of proteins that co-immunoprecipitated
with Cdk6 and Cdk4 has shown complexes containing
both Hsp90 and Cdc37 [77–79].

Cdc37 also promotes the production of Cak1. Cak1 in
yeast is the human homolog of CAK trimeric enzyme con-

taining CDK7, cyclin H, and MAT1. Both human and
yeast Caks function as RNA polymerase II CTD kinase,
Cdk activating kinase, and DNA damage/repair enzymes.
Cdc37, like its higher eukaryotic homologs, promotes the
physical integrity of multiple protein kinases, perhaps by
virtue of a cotranslational role in protein folding [80]. Fi-
nally, Hsp90/Cdc37 has recently been shown in the stabi-
lization/folding of Cdk9 as well as the assembly of an
active Cdk9/cyclin T1 complex responsible for P-TEFb-
mediated Tat transactivation [81].

Transcription and chromatin remodeling factors
A highly ordered chromatin structure presents a physical
obstacle for gene transcription; presumably by limiting

Figure 4
Synthesis of IL-8 in Tat expressing cells. Hela cells (pCEP4, and eTat) were either unblocked (unt), or blocked with hydroxyu-
rea (Hu) (2 mM) for 14 h, released, washed twice with phosphate-buffered saline (PBS) and subsequent addition of complete 
medium [103]. Supernatants were collected at 9 hrs after release for ELISA. All remaining suspension cells were treated with 
1% serum for 48 hrs prior to addition of Hu. PHA-activated PBMCs were kept in culture for 2 days prior to addition of Tat 
protein. Approximately 5 × 106 PBMCs were used for treatment with either wild type or K41A Tat mutant (100 ng/ml) pro-
teins. After an initial incubation for one hr with Tat proteins, cells were washed and cultured in complete media for 24 hrs, 
prior to IL-8 ELISA.
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the access of transcription factors and RNA polymerase II
core machinery to target DNA [82,83]. In concert with the
observation that corepressors are associated with HDAC
activities [84,85], it appears that the transcriptional out-
come of nuclear receptors is determined by the balance of
histone acetylation and deacetylation activities, and that
ligands serve as a switch to recruit HATs with the concom-
itant dismissal of HDACs. Signal transduction pathways
add another layer of regulation to the functions of CBP/
p300. In the case of the POU homeodomain factor Pit-1,
transcriptional activity is potentiated by MAPK pathways
[86]. Therefore, down-regulation of MAPK pathway mem-
bers in Tat expressing cells, as seen in Table 3, is consistent
with decreased phosphorylation of DNA binding factors
such as Pit-1, and overall lower DNA binding activity.
Here, we describe the effect of coactivator proteins SRC-1
(Acc# AJ000882, U90661, Table 1) and p300 (Acc#
U01877, Table 3), and their relation to differentiation
genes such as retinoic acid receptor (RAR/PML, Acc#:
X06614, Table 1), and Leptin receptor variant (Acc#:

U66496, Table 1); all of which are down-regulated in Tat
expressing cells (Figure 5).

Over the past three decades a great deal of evidence has ac-
cumulated in favor of the hypothesis that steroid receptor
hormones act via regulation of gene expression. The ac-
tion is mediated by specific nuclear receptor proteins,
which belong to a superfamily of ligand-modulated tran-
scription factors that regulate homeostasis, reproduction,
development, and differentiation [87]. This family in-
cludes receptors for steroid hormones, thyroid hormones,
hormonal forms of vitamin A and D, peroxisomal activa-
tors, and ecdysone [88]. Nuclear hormone receptors are
ligand-dependent transcription factors that regulate genes
critical to such biological processes as development, re-
production, and homeostasis. Interestingly, these
receptors can function as molecular switches, alternating
between states of transcriptional repression and activa-
tion, depending on the absence or presence of a cognate
hormone, respectively. In the absence of cognate hor-

Figure 5
Predictive model for control of gene expression and signal transduction by constitutive Tat expressing cells. Down-regulation 
of SWI/SNF components such as BAF 170 and 60 along with coactivators CBP/p300 and SRC-1 may down-regulate a subset of 
cellular genes that depend on chromatin remodeling and/or co-activator function for their gene expression. Such genes depend 
on the presence of ligand receptors that require either both SRC-1 and p300 or individual co-activator for their activity.

7�9.

"�9���

"�9���

"�9��

"�9�:

"�9�:�

"�9��

"�9
��

2/9�

"1��

�"�'&���

21���

�%��;)��,� ��.�,�0�

�%0�$<)��,�
�,<�		

		"

		�

7�7�

7"�		� 		�
		9

�,=���+05�<)��,�

,*�50�0.�%,>��5�*,+
Page 15 of 22
(page number not for citation purposes)



BMC Biochemistry 2002, 3 http://www.biomedcentral.com/1471-2091/3/14
mone, several nuclear receptors actively repress transcrip-
tion of target genes via interactions with the nuclear
receptor corepressors SMRT and NCoR. Upon binding of
the hormone, these corepressors dissociate from the
DNA-bound receptor, which subsequently recruits a nu-
clear receptor coactivator (NCoA) complex. Prominent
among these coactivators is the SRC (steroid receptor
coactivator) family, which consists of SRC-1, TIF2/GRIP1,
and RAC3/ACTR/pCIP/AIB-1. These cofactors interact
with nuclear receptors in a ligand-dependent manner and
enhance transcriptional activation via histone acetylation/
methylation and recruitment of additional cofactors such
as CBP/p300 [89]. CBP/p300 has been implicated in the
functions of a large number of regulated transcription fac-
tors based primarily on physical interaction and the abili-
ty to potentiate transcription when overexpressed [90]. In
the case of nuclear receptors, the interaction with CBP/
p300 is ligand-dependent and relies on the conserved nu-
clear receptor functional domain, AF-2 (activation func-
tion 2). In vivo studies have supported the conclusion that
CBP/p300 are components of the hormonal-regulation of
transcription in fibroblasts isolated from a p300-/- mouse;
and loss of the p300 gene severely affects retinoic acid
(RA)-dependent transcription [91]. In a separate study us-
ing hammerhead ribozymes that specifically cleave CBP
or p300 mRNA, Kawasaki et al [92] reported that reduced
cellular CBP or p300 levels resulted in compromised ex-
pression of endogenous RA-inducible genes such as p21/
Waf1 and p27 cdk inhibitors. Along this line, Tat
expressing cells have lower levels of p21/Waf1 presuma-
bly due to inactivation of p53 and a lack of p300/RA- in-
duced gene expression. Consistent with this
interpretation, CBP and p300 harbor transcriptional acti-
vation of ligand-induced RA or ER function on a chromat-
inized template [93].

The NcoA family members constitute SRC-1/NcoA-1 [89],
TIF2/GRIP1/NcoA-2, [94,95] and pCIP/ACTR/AIB1 [96–
98] proteins, which interact with liganded RA receptor
(RAR), and CBP/p300. Overexpression of these NCoA fac-
tors enhances ligand-induced transactivation of several
nuclear receptors [99]. A weak intrinsic HAT activity has
been reported in SRC-1/NCoA-1 and pCIP/ACTR/AIB1,
suggesting that chromatin remodeling may also be a
function of these NCoA factors [99,100]; although they
do not appear to contain regions homologous to the HAT
domains of CBP/p300 or p/CAF. Structure-function anal-
ysis of the NCoAs have revealed multiple copies of a sig-
nature motif, LXXLL, with conserved spacing that is
required for interaction with nuclear receptors and CBP/
p300 [99,101]. Intriguingly, different LXXLL motifs are re-
quired for PPARγ (Peroxisome Proliferator activated
receptor γ, a gene down-regulated in Tat expressing cells;
Acc# L07592, Table 1) function in response to different

classes of ligands, suggesting distinct configuration of as-
sembled complexes.

Taken together, through the use of microarray technology,
we have described one of the first observations about how
Tat is able to control various host cellular machineries. Al-
though our data is consistent with most of the cited liter-
ature on the effects of Tat in infected host and uninfected
bystander cells, we caution that the transcriptional
profiling in chronically infected cells such as ACH2 or H9/
Tat cells may not necessarily be representative of the pat-
tern of expression observed in most cells infected by other
group M, N, or O HIV-1 isolates.

We recently extended our observations by utilizing other
HIV-1 infected cells which normally express Tat (U1), and
addition of exogenous purified Tat to uninfected PBMCs.
Preliminary results using western blots supports the idea
that genes which were altered in H9/Tat system also
showed a similar level of change in few of the tested genes
(Figure 3C). This notion of consistency was further con-
firmed using the IL-8 activation by Tat. Interleukin-8 (IL-
8) belongs to the CXC chemokine family and is secreted
by several different cell types, including monocytes, neu-
trophils, endothelial cells, fibroblasts, and T lymphocytes.
IL-8 production (induced by several stimuli, including IL-
1, TNF-, and phorbol myristate acetate) is primarily regu-
lated at the transcriptional level. IL-8 is a potent chemo-
tactic factor for granulocytes and T lymphocytes, and is
found in HIV-infected individuals. The CXC chemokine
IL-8 does not bind to CCR5. It has previously been shown
that IL-8 mRNA induction was seen less then 1 h after Tat
(72aa) stimulation, and levels remained elevated for up to
24 h, leading to IL-8 protein production [102]. Along
these lines, we have previously shown that the IL-8 gene is
expressed in a cell cycle-dependent manner in cells that
express the Tat protein, and the induction is during the S
phase of the cell cycle and regulated by stable NF-kB bind-
ing to the IL-8 promoter [103]. When looking for IL-8 at
the G1/S border, we found that all Tat containing cells, in-
cluding PBMCs that were treated with exogenous Tat
showed an up-regulation of IL-8 in the supernatant (Fig-
ure 4), further implying that results obtained from the
H9/Tat system may infact be of general physiological rel-
evance in vivo.

Finally, throughout the current study we came across
some technical findings that were critical in the confirma-
tion of most of our results. For instance, few genes did not
correlate in their activation or suppression levels when
comparing fold changes between microarrays and protein
levels using western blot analysis. We suspect this is be-
cause many genes that are transcribed may not necessarily
be translated, due to their cell cycle stage, 5' stem and loop
RNA structures, varying half-lives of proteins and mRNAs,
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and a host of other unknown variables. Also, specific
changes that occur in a cell may not be required in
redundant pathways that score for a specific function. This
is commonly seen in the differences between HIV-1 infect-
ed or Tat expressing in vitro cell lines and AIDS patients
PBMC samples. Therefore, other microarrays would have
to be performed on purified infected PBMCs to confirm
most of the changes observed in Tables 1, 2, and 3. Unfor-
tunately, to date this particular issue is not feasibly ad-
dressable, since it is not possible to isolate a homogenous
population of infected T- or Monocytic cells from AIDS
patients. Also, confirmatory tests for protein expression
would have to be done with both hydrophilic and hydro-
phobic extraction buffers. For instance, we have observed

that PCNA protein, which is up-regulated in Tat express-
ing cells, extract best with hydrophobic buffers from the
nucleus, presumably due to its binding to DNA replica-
tion machinery (data not shown). Future experiments will
address issues related to differences between various HIV-
1 Tat clades, host expression levels between T- and Mono-
cytic cells, and its effect at various stages of the cell cycle.

Conclusions
Expression profiling from HIV-1 or Tat expressing cells
holds great promise for rapid functional analysis. Here,
we have described the effect of Tat and its alterations with
the host cellular gene expression. We observed that more
than 2/3 of the cellular genes tested were down-regulated

Figure 6
Proposed model for changes in signal transduction. A) Down-regulation of receptor tyrosine kinases (RTK) by Tat which mod-
ulates the phosphorylation and transcription of downstream effectors such as Ras, Raf, MEK, MAPK, and control transcription 
factor phosphorylation. B) Role of Tat in the increase of genes necessary for proliferation, such as Cdc2, Cdc37, and Prothy-
mosin α, and down-regulation of differentiation genes, such as receptors, co-receptors, and signal transduction genes.

�0<<�#0#�+)�0

2�+0..��%��;)�0>�

?/@��).%)>0

�+,<�*0+)��,�'>�**0+0���)��,�

.�5�)<.��17@�

1).

��

�@@�'

�@@A

���@

�1@�'�1@


����@�'���@
�

%�?��

7+)�.%+�&��,�

9)%�,+.

& &

. . .

&

1)*
����@@@�

��@ ?/@

�2��@��

"�

�+,<�*0+)��;0��0�0.

��**0+0���)��,���0�0.

7)�
Page 17 of 22
(page number not for citation purposes)



BMC Biochemistry 2002, 3 http://www.biomedcentral.com/1471-2091/3/14
by Tat. These genes belong to receptor, co-receptor, and
co-activator pathways that are part of serine/threonine re-
ceptor tyrosine kinase, Ras/Raf/MEK/ERK (MAPK) cas-
cade, which control proliferative and/or differentiation
signals. We also observed a great deal of increase in the
host cell translation apparatus with the possible aim of
optimizing viral mRNA translation prior to viral matura-
tion and release. Therefore, HIV-1 accessory doubly
spliced messages such as Tat, may control the host gene
expression in latently infected cells, and determine not
only viral transcription, but also the fate of post-transcrip-
tional events.

Materials and method
Cell culture
ACH2 cells are HIV-1 infected CD4 lymphocytic cells,
with an integrated wild-type single-copy chromatinized
DNA. The CEM T cell (12D7) is the parental cell for ACH2
cells. ACH2 cell lines has a single copy of LAI strain
proviral sequence. The TAR has a point mutation at (C37
-> T), which no longer responds (efficiently) to Tat. How-
ever, the cell line is fully capable of making infectious vi-
rus in presence of TNF, PHA, PMA, and a host of other
stimuli. H9 and H9/Tat cells are both CD4+ Lymphocytic
cells, where H9 cells carry a control integrated vector with-
out the Tat open reading frame, and H9/Tat cells carry in-
tegrated Tat expression vector. Both cell lines were a
generous gift of George Pavlakis (NCI, NIH). U1 is a
monocytic clone harboring two copies of the viral ge-
nome from parental U973 cells. All cells were cultured at
37°C up to 105 cells per ml in RPMI-1640 media, contain-
ing 10% Fetal Bovine Serum (FBS) treated with a mixture
of 1% streptomycin and penicillin antibiotics, and 1% L-
glutamine (Gibco/BRL). Phytohemagglutinin-activated
PBMC were kept in culture for 2 days prior to addition of
Tat protein. Isolation and treatment of PBMC were per-
formed by following the guidelines of the Centers for Dis-
ease Control. Approximately 5 × 106 PBMC were used for
treatment of wild type and K41A Tat mutant (100 ng/ml)
proteins. After an initial incubation for one hr with Tat
proteins, cells were washed and cultured in complete
media for 24 hrs, prior to western blots. pCEP4, eTat cells
were HeLa cells stably transfected with either a backbone
control plasmid (pCEP4; Invitrogen) or a plasmid
expressing Tat (1–86) with a C-terminal epitope tag (eTat)
[103]. HeLa cell lines containing either the control or eTat
plasmid were selected by single-cell dilution. Both cell
types were selected and maintained under 200 µg of hy-
gromycin per ml. Verification of Tat transcriptional activ-
ity was achieved by electroporation of reporter plasmids
as previously described [103].

Cell cycle analysis
Hela cells were blocked with hydroxyurea (Hu) (2 mM)
for 14 h. Following the block, cells were released by being

washed twice with phosphate-buffered saline (PBS) and
by the addition of complete medium. All suspension cells
were treated with 1% serum for 48 hrs prior to addition of
Hu. Supernatants were collected and analyzed by an IL-8
ELISA according to the manufacturer's instructions (Bio-
source International). For controls, each sample,
approximately 1 × 106 cells was processed for cell sorting.
Cells were washed with PBS and fixed by addition of 500
µl of 70% ethanol. For fluorescence-activated cell sorting
(FACS) analysis, cells were stained with a cocktail of
propidium iodide (PI) buffer (PBS with Ca2+ and Mg2+,
RNase A [10 µg/ml], NP-40 [0.1%], and PI [50 µg/ml])
followed by cell-sorting analysis. FACS data acquired were
analyzed by ModFit LT software (Verity Software House,
Inc.).

Cell extract preparation and immunoblotting
All cells were cultured to mid-log phase of growth, washed
with PBS without Ca2+ and Mg2+, and lysed in a buffer
containing 50 mM Tris-HCl (pH 7.5), 120 mM NaCl, 5
mM EDTA, 50 mM NaF, 0.2 mM Na3VO4, 1 mM DTT,
0.5% NP-40 and protease inhibitors (Protease inhibitor
cocktail tablets, Boehringer Mannheim, one tablet per 50
ml). The lysate was incubated on ice for 15 min, and mi-
crocentrifuged at 4°C for 10 min. Total cellular protein
was separated on 4–20% Tris-glycine gels (Novex, Inc.)
and transferred to a polvinylidene difluoride (PVDF)
membranes (Immobilon-P transfer membranes; Milli-
pore Corp.) overnight at 0.08 A. Following the transfer,
blots were blocked with 5% non-fat dry milk in 50 ml of
TNE 50 (100 mM Tris-Cl [pH 8.0], 50 mM NaCl, 1 mM
EDTA) plus 0.1% NP-40. Membranes were probed with a
1:200–1:1000 dilution of antibodies at 4°C overnight,
followed by three washes with TNE 50 plus 0.1% NP-40.
All antibodies used in this study were purchased from
Santa Cruz Biotechnology. The next day, blots were incu-
bated with 10 ml of 125I-protein G (Amersham, 50 µl/10
ml solution) in TNE 50 plus 0.1% NP-40 for 2 hrs at 4°C.
Finally, blots were washed twice in TNE 50 plus 0.1% NP-
40 and placed on a PhosphorImager cassette for further
analysis.

Total RNA purification
Cells were grown to mid-log phase of growth (5.0 × 106),
pelleted, and washed twice with cold D-PBS without
Ca2+/Mg2+. Total RNA was extracted on ice using Trizol
Reagent (Life Technologies, Inc.). Purified RNA was then
analyzed on a 1% agarose gel for quality and quantity pri-
or to each experiment.

Glass slide microarray
Gene expression analysis was performed using Micro-
max™: Human cDNA Microarray System I (cat# MPS101,
NEN Life Science Products). On a glass microarray slide,
2400 know human genes were arrayed into 4 separate
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grids (A, B, C, D), containing 600 genes each (gene de-
scription and location on microarrays available at NEN
website: www.nenlifesci.com). All human genes were
~2200 bp cDNAs, and were characterized from 50+ hu-
man cDNA libraries (AlphaGene, Inc., Woburn, MA). In
addition to the human genes, three plant control genes
were spotted on each grid and were utilized to balance the
Cyanine-3 (Cy-3) and Cyanine-5 (Cy-5) fluorescence
signals.

A total of 8 µg each of H9 (control sample) and H9/Tat
(test sample) mRNAs were reverse transcribed into Biotin
and Dinitrophenyl (DNP) labeled cDNA, respectively.
After cDNA quality and quantities were analyzed, both
cDNAs were then pooled and simultaneously hybridized
overnight at 65°C onto the glass microarray. The next day,
the microarray slide was serially washed in 0.5× SSC (So-
dium Citrate-Sodium Chloride) + 0.01% SDS (Sodium
Dodecyl Sulfate), 0.06× SSC + 0.01% SDS, and 0.06× SSC.
Next, the Tyramide Signal Amplification (TSA™) was then
used to amplify the Cy-3 and Cy-5 signals using antibody-
enzyme conjugates, α-DNP-Horseradish peroxidase
(HRP) and α-Streptavidin-HRP with Tyramide linked Cy-
3 and Cy-5. Screening and data analysis was performed by
NEN.

cDNA filter hybridization
Gene expression of CEM and ACH2 were performed using
Atlas Human cDNA Expression Array (Clontech Laborato-
ries Inc., Palo Alto, CA) according to the manufacturer's
directions. One µg of poly A+ RNA each was DNase I treat-
ed, purified using a CHROMA SPIN-200 column, and re-
verse transcribed into 32P-labeled cDNA. The CHROMA
SPIN-200 column was used to purify the 32P-labeled
cDNA from unincorporated 32P-labeled dNTPs and small
(<0.1 kb) cDNA fragments. Each sample was then hybrid-
ized to a human cDNA expression array overnight with
continuous agitation at 68°C. The next day, the array was
washed three times with gentle agitation, first wash with
2× SSC + 1% SDS and the last two washes with 0.1× SSC
+ 0.5% SDS at 37°C. Array was exposed to a PhosphorIm-
ager Cassette and analyzed using ImageQuant software.

Northern blots
Total cellular RNA was extracted using the RNAzol reagent
(Gibco/BRL). Total RNA (20 µg) was isolated from
various cells and ran on a 1% formaldehyde-agarose gel
overnight at 75 V, transferred onto a 0.2 µm nitrocellulose
membrane (Millipore Inc.), UV cross-linked, and hybrid-
ized overnight at 42°C with 32P-end-labeled 40 mer oligo
probes including p21/Waf1, C-myc, Pro-thymosin, Actin,
Tat, and Ubiquitin (Loftstrand, Gaithersburg, Md.). Next
day, membranes were washed two times for 15 min each,
with 10 ml of 0.2% SDS-2XSSC at 37°C, exposed, and
counted on PhosphorImager Cassette.

Viral infection and ELISA assay
Both H9 and H9/Tat cells were infected in the presence of
10 ug of polybrene. For PBMC infections, PHA activated
PBMCs were kept in culture for 2 days prior to each infec-
tion. Isolation and treatment of PBMCs were performed
by following guidelines from the CDC (Isolation, culture,
and identification of HIV, Procedural Guide, July 1991,
Atlanta, GA). Approximately 2 × 10 6 of H9 or H9/Tat
cells, and 5 × 10 6 PBMC cells were infected with either an
HXB-2 (CXCR4, T-tropic), or BaL (CCR5, Macrophage-
tropic) at 5 ng of p24 gag antigen/ HIV-1 strain. Both viral
isolates were obtained from the NIH AIDS research and
reference reagent program. After 8 hrs of infection, cells
were washed and fresh media was added. Samples were
collected every 3rd day and stored at -20 C for p24 gag ELI-
SA. Media from HIV-1 infected cells were centrifuged to
pellet the cells and supernatants were collected, and dilut-
ed to 1:100 to 1:1000 in RPMI 1640 prior to ELISA. The
p24 gag antigen level was analyzed by HIVAG™-1 Mono-
clonal antibody Kit (Abbott Laboratories, Diagnostics
Division).
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