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Abstract

Background: To better understand the molecular interactions of Bt toxins with non-target
insects, we have examined the real-time binding specificity and affinity of Cryl toxins to native
silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush
border membrane vesicles or purifed receptors in blot-type assays.

Results: The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for
Bacillus thuringiensis insecticidal Cry | Aa toxin were purified and their real-time binding affinities for
Cry toxins were examined by surface plasmon resonance. Cry|Ab and Cry| Ac toxins did not bind
to the immobilized native receptors, correlating with their low toxicities. CrylAa displayed
moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor
(2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was
identical to Cry|Aa.

Conclusions: These results indicate domain Il of Cry|Aa is essential for binding to native B. mori
receptors and for toxicity. Moreover, the high-affinity binding of CrylAa to native cadherin-like
receptor emphasizes the importance of this receptor class for Bt toxin research.

Background

Bacillus thuringiensis (Bt) has been sold commericially
and used as a biopesticide worldwide for over half a cen-
tury. However, growing public concern surrounding Bt
use has sparked worldwide debate over current policies
[1]. For example, in India, fear over a potential Bombyx
mori (silkworm) epizootic, or microbial pathogen out-
break, inspired a governmental ban on the use of Bt, de-
spite the nation's continuing use of traditional chemical
pesticides [2].

While pest control with Cry toxins that possess low B.
mori activity (i.e. Cry1Ac) is a viable solution in affected
countries, it is worthwhile to investigate the specific mo-
lecular mechanisms that make Cry1Aa highly active. Ear-
ly work took advantage of the fact that Cry1Aa, but not
Cryl1Ag, is toxic to B. mori. For example, Ge et al.[3] ex-
changed hypervariable regions between genes encoding
the two toxins and localized the toxicity specifying region
of Cry1Aa to residues 332—450 in domain II. A follow-up
study demonstrated the toxicity specifying residues were
involved in binding B. moribrush border membrane ves-
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icles [4]. More specifically, alanine substitution or dele-
tion of residues 365 to 371 removed nearly all toxicity
and binding to B. mori BBMV [5].

Recently, research on B. mori has focused on purifying
and cloning the midgut epithelial receptors targeted by
Cry1Aa toxin. The first toxin-binding receptor purified
from B. mori was a 120-kDa aminopeptidase N (APN),
which appears around 110-kDa on SDS-PAGE gels when
preparative conditions are used that cleave its glycosyl-
phosphatidylinositol (GPI) anchor. This receptor was
shown to bind Cry1Aa with a 7.6 nM affinity, as deter-
mined by Scatchard analysis with ELISA binding assays
[6]. The APN was cloned and expressed in E. coli and
demonstrated to bind Cry1Aa toxin on ligand blots [7].
These results indicate the Cry1Aa-APN interaction was
specific and that APN glycosylation was not required for
Cry1Aa binding. This is not altogether surprising because
Cry1Aa binding to Manduca sexta APN has not been
found to be modulated by sugar binding [8] and the B.
mori APN sequence is 73.7% identical to M. sexta APN-
1. Sequence alignments with Plutella xylostella APN re-
ceptor indicate that a highly conserved region of APN
likely functions as the toxin binding site [9]. By testing
for toxin binding to lysylendopeptidase-digested B. mori
APN fragments, the toxin binding site was suggested to
be between Ile135 and Pro198. A later study by these au-
thors identified 120-kDa and 115-kDa APNs coeluting
from an anion-exchange column that together yielded a
Cry1Aa affinity of 53 nM [10]. These APNs eluted just
prior to a 120 kDa APN with 7.6 nM affinity. It is unclear
whether the 120- and 115-kDa proteins represent un-
cleaved and cleaved GPI-anchor isozymes. Interestingly,
this study also showed that Cry1Ac toxin binds to the
120/115 kDa APN fraction with equal affinity as Cry1Aa,
and only 4-fold reduced affinity to the isolated 120-kDa
APN. Nonetheless, Cry1Aa is 210 times more toxic than
Cry1Ac to B. mori[4]. As a whole, B. mori APN research
indicates the presence of at least three genetic isoforms
[7,11,12], with toxin affinities ranging from nanomolar to
none at all.

In addition to APN, a completely different toxin receptor
class has been affinity precipitated by toxin from solubi-
lized B. mori midgut proteins. In this manner, Nagamat-
su et al.[13] purified a 175-kDa glycoprotein (BtR175)
that bound Cry1Aa toxin. Interestingly, these authors did
not observe binding of Cry1Aa to APN-sized bands in lig-
and blot studies with BBMV. Antibodies produced to
BtR175 blocked toxin binding to the receptor in BBMV.
The antibody serum also reduced Cry1Aa activity against
B. mori when it was fed to larvae prior to toxin addition
to the diet [14]. The same group cloned and introduced
the BtR175 gene with a baculovirus vector intoSpodptera
frugiperda Sf9g cells. Addition of Cry1Aa caused swelling
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and lysis of only the Sfg cells expressing BtR175. Based
on sequence analysis, the receptor was characterized as a
cadherin-like glycoprotein containing nine cadherin re-
peats, a membrane proximal region, one transmem-
brane region, and a small cytoplasmic domain [15]. Thara
et al.[16] also purified and partially sequenced what was
presumed to be the same cadherin-like receptor. Binding
studies indicated that the affinity of the cadherin for
Cry1Aa is equivalent to that of the brush border mem-
brane vesicles from B. mori[16], an affinity that is sub-
stantially lower than the APN affinities reported.
Recently, cDNA variants of BtR175 have been discov-
ered, showing at least three alleles of the cadherin-like
receptor are found in B. mori[17]. It is likely that glyco-
sylation plays a major role in cadherin-like receptor iso-
forms as well, as glycosylation has been observed
previously for the M. sexta cadherin-like receptor BT-
R,[18].

Progress in research on silkworm receptors for Bt toxins
has provided a means for assaying mutant toxins with
potentially altered binding and activity. In this study, we
tested the hypothesis that Cry1Aa binds to both the 120-
kDa B. mori APN and the 175-kDa B. mori cadherin-like
protein. Based on the previous work of Ge, et al. [3] and
Lee, et al. [4], we also postulated that domain II of
Cry1Aa is the significant binding domain. These hypoth-
eses were tested for the first time in studies with purified,
native B. mori receptors (rather than BBMV) under real-
time, non-labeled toxin binding conditions.

Results

Bombyx mori aminopeptidase N and cadherin-like recep-
tor purification

To investigate the specificity of Cry toxins for B. mori re-
ceptors, the two known B. mori midgut receptors were
purified from B. mori BBMV. Solubilized B. mori BBMV
proteins were separated by Q Sepharose anion-exchange
chromatography and all eluted fractions were tested for
APN enzymatic activity. Additionally, Cry1Aa toxin bind-
ing capability was assayed by "slot blotting" all fractions
and probing with biotin-Cry1Aa. The chromatogram in
Fig. 1 displays the separation of cadherin and APN from
BBMYV proteins. APN isozymes of 100- and 110-kDa were
detected that did not show Cry1Aa-binding in slot blot
assays (Fig. 1; fractions 24—25 and 30—31). Such iso-
zymes have been reported previously [11,12]. In addition,
a 115-kDa APN was detected with Cry1Aa-binding capa-
bility (Fig. 1; fractions 33—36). As expected, fractions
were also observed that exhibited no APN enzymatic ac-
tivity but bound Cry1Aa on slot blots (Fig. 1; fractions
26—27). Initially these fractions were predicted to con-
tain the cadherin-like Cry1Aa-binding protein [13,14,16].
The candidate receptor fractions for APN and cadherin
were separately loaded on a size-exclusion column for



BMC Biochemistry 2001, 2:12

% NaCl % cond

AUz |

0.10

0.05 |

20.0

Figure |

Separation of Bombyx mori aminopeptidase N and cadherin-
like receptor from solubilized BBMV proteins by anion-
exchange chromatography. (A) The absorbance units at 280
nm (AU,go) are indicated at left. At right, the percent of
buffer B (% NaCl) and actual salt conductivity (% cond) of
line traces are shown. Colored fractions denote: yellow, frac-
tions with APN enzymatic activity, but without Cry | Aa-bind-
ing ability (24-25 and 30-31); green, fractions with both APN
enzymatic activity and CrylAa-binding ability (33-36); and
blue, fractions that have CrylAa binding but no APN activity
(26-27).

further purification (Fig. 2A and 2B). A protein with APN
enzymatic activity eluted 75 minutes after injection (Fig.
2A; fractions 15—16), approximately 4 minutes after the
120-kDa L. dispar APN elutes on the same column [19].
The candidate cadherin-like receptor fraction eluted in
fractions 9—11 at around 180 kDa (Fig. 2B).

Analysis of receptor purity

The pooled and concentrated candidate receptor frac-
tions were examined by SDS-PAGE before and after size-
exclusion purification to assess purity (Fig. 3). The puta-
tive cadherin-like receptor material appears at a molecu-
lar size around 180 kDa, both before and after secondary
purification (Lanes 2 and 1, respectively). Several BBMV
proteins appear present in the APN-containing fraction
prior to size-exclusion purification (Fig. 3; Lane 4). The
molecular weight of the final, purified APN was estimat-
ed to be 115—-120 kDa (Fig. 3; Lane 3). It is not known
whether the GPI anchor is still intact on the APN recep-
tor; however, in the current study, phosphatidylinositol-
specific phospholipase C (PIPLC) was not used during
BBMYV preparation. It was shown previously that APN
may be purified with intact GPI-anchors if PIPLC is
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(A) Further purification of anion-exchange purified B. mori
APN (115 kDa) fractions (33—-36) by size-exclusion chroma-
tography. Absorbance (mAU) at 280 and 260 nm is shown at
left. Collected fractions are shown at bottom in 5 ml inter-
vals and run volume (ml) is indicated. Purified APN fractions
used for further analysis are noted (15-16). (B) Purification
of anion-exchange purified B. mori cadherin-like receptor
(BtR175, 175 kDa) fractions (26—27) by size-exclusion chro-
matography. Absorbance at 280 nm is shown at left (mAU)
Absorbance at 260 nm was insignificant (not shown). Purified
BtR 175 fractions used for further analysis are noted (9—11).

omitted from the preparation buffer [6]. It is likely that
our APN has similarly retained the GPI anchor.

In view of the fact that B. mori BtR175 possesses se-
quence similarity to M. sexta BT-R;, the candidate frac-
tion was probed on a slot blot with anti-BT-R; polyclonal
antiserum. A weak to moderate cross-reactivity with
anti-BT-R, was observed for B. mori BBMV as well as the
putative cadherin-like receptor fraction, providing
strong evidence that the material is a cadherin-like pro-
tein (Fig. 4). Anti-Bt-R, antibody recognition was not ob-
served for fractions eluting before and after the cadherin
material, nor for the purified APN (Fig. 4). Similar anti-
body assays were not performed to substantiate the iden-
tity of the purified APN because it clearly displayed
strong, characteristic APN enzyme activity.

The purity of both receptors was further examined by a
Cry1Aa toxin ligand blot (Fig. 5). Both APN and the cad-
herin-like receptor fractions bound biotinylated Cry1Aa.
No other toxin-binding bands were apparent, and nei-
ther purified receptor sample was visibly cross-contami-
nated with the other receptor (Fig. 5).
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SDS-PAGE (10%) of pooled and concentrated column-puri-
fied fractions. Molecular weights of marker bands (M) are at
left. Lane |, purified BtR175 from size-exclusion fractions 9—
I'l (Fig. 2B); Lane 2, anion-exchange column fractions 2627
(Fig. 1) used for size-exclusion purification of BtR175; Lane 3,
purified APN from size-exclusion fractions 15—16 (Fig. 2A);
Lane 4, anion-exchange column fractions 33-36 (Fig. |) used
for size-exclusion purification of APN.

Affinity estimation by surface plasmon resonance

Cry toxin binding studies have been reported previously
forB. mori that used BBMV assays or used purified re-
ceptors in ELISA assays or blots; however, no Cry toxin
studies concerning B. mori have been published employ-
ing SPR analysis. The affinity of Cry1Aa binding to B.
mori APN and B. mori cadherin receptors was evaluated
by real-time kinetic analysis on a BIAcore 2000. Simple
bimolecular binding of Cry1Aa was observed to both B.
mori APN and cadherin (Fig. 6A and 6B). Toxin-receptor
on-rates for association (k,), off-rates for dissociation
(kq), and overall binding affinity (ky/k,, or Ky,) were cal-
culated for toxin binding. The apparent rate constants
for wild-type Cry1Aa and B. mori APN were k, = 2.0 x 104
M-1s1(+/-1.3 X102),kg =1.5 X103 51 (+/-1x1075),and
K7 =75 nM. To B. mori cadherin, significantly tighter af-
finities were obtained: k, = 1.3 x 104 M1s1 (+/- 6.1), kq =
3.3 %1075 s! (+/-1x 1075), Ky = 2.6 nM. This apparent
off-rate clearly accounted for Cry1Aa's higher affinity for
cadherin than for APN. The cadherin off-rate observed in
this study could have significant consequences in vivo:
slow toxin dissociation may enable protracted lingering
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B. mori cadherin-like receptor cross-reacts with anti-M. sexta
BT-R,. All samples were slot blotted and probed with rabbit
anti-BT-R| antibody, followed by peroxidase-conjugated goat
anti-rabbit antibody and development. M. sexta and B. mori
brush border membrane vesicles (BBMV) antibody reactivity
is shown. Also displayed are pooled and concentration frac-
tions 5-8, 9—11, and 14-16 from size-exclusion column puri-
fication of BtR175 (Fig. 2B) and the purified APN from size-
exclusion fractions 15—16 (Fig. 2A).

near the brush border membrane surface, greatly facili-
tating toxic (domain I) insertion and subsequent pore
formation. The overall affinity determined in the present
study for Cry1Aa to BtR175 (2.6 nM) agrees well with the
findings of Thara et al.[16] by a different assay (0.8 nM).

We also explored the specificity of Cry1Aa for the native
B. mori receptors by comparing the binding response of
Cry1Aa with the binding of Cry1Ab, Cry1Ac, and domain-
switched toxin 4109 (Fig. 7A and 7B). Hybrid toxin 4109
is particular useful in this context, because it is com-
prised of domains I and II from Cry1Aa and domain II1
from Cry1Ac (Aa/Aa/Ac) [3]. Hybrid-toxin 4109 binding
to both receptors was not noticeably different from
Cry1Aa: for APN binding, k, = 1.9 x 104 M1s1 (+/- 1.4 x
102), kg =1.5 X103 s71 (+/- 1.6 x 1075), and K = 78 nM;
for cadherin binding, k, = 1.3 x 104 M1s71 (+/- 2 x 102),
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Ligand blot of purified B. mori APN and cadherin-like recep-
tors (5 ug each lane, 6% SDS PAGE) probed with biotinylated
CrylAa toxin (50 pg). M, pre-stained molecular weight
standards; APN, purified B. mori APN; cad, purified cadherin-
like receptor.

kg =3.34 X105 51 (+/- 2 x 1075), and Ky = 2.6 nM. In
stark contrast, Cry1Ab and Cry1Ac showed no apparent
binding to either receptor (Fig. 7A and 7B). These results
are entirely consistent with the hypothesis that Cry1Aa
domain II (alone) is essential for binding to both the APN
and cadherin-like receptors as purified in the present
study.

Discussion
The dissociation constants presented are the first deter-
mined for B. mori Cry receptors by the use of SPR tech-
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Real-time binding of CrylAa to B. mori APN and cadherin-
like protein, BtR175. Representative BlAcore response
curves for toxin injections at 200, 300, 500, and 1000 nM.
Experimental curves (gray) are shown overlaid with fitted
curves (black) obtained with the I:| Langmuir binding model.
Response units (RU) are shown at left (I RU = | pg/mm? of
protein bound). (A) CrylAa wt binding to B. mori APN. (B)
CrylAa wt binding to B. mori BtR175.

nology. Additionally, the apparent affinity of Cry1Aa for
the cadherin-like receptor is the highest observed affinity
to date for Cry toxin binding to purified receptors using
SPR. This finding emphasizes the important biological
role that this receptor class plays for Bt toxins. Recently,
using phage display technology, a scFv molecule with
short sequence homology to M. sexta and B. mori cad-
herin-like receptors was shown to bind domain II of
Cry1Aa, Cry1Ab, and Cry1Ac toxins [20]. In the present
study, only Cry1Aa shows measurable binding to the pu-
rified, native cadherin-like receptor from B. mori. This
finding may be the result of purification of a particular
receptor variant with Cry1Aa specificity (e.g., one of po-
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Sensorgrams of CrylA toxins and hybrid toxin binding to
purified native B. mori receptors. SPR response units (RU) are
at left. Shown are overlaid traces of CrylAa, CrylAb,
CrylAc and hybrid toxin 4109, consisting of domains | and I
from CrylAa and domain Ill from CrylAc (Aa/Aa/Ac). (A)
Toxin injection (500 nM) over immobilized aminopeptidase-
N (APN). (B) Injection (500 nM) over immobilized B. mori
cadherin-like protein.

tentially several glycosylated isoforms). Alternatively, it
may reflect greater specificity of Cry1Aa domain II for
neighboring residues on the B. mori cadherin-like recep-
tor beyond the conserved Cry1A-toxin binding segment,
which might be absent in smaller peptide sequences.
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The apparent Cry1Aa affinity for purified APN measured
in this study, 75 nM, is 10-fold higher than the value re-
ported by Yaoi et al.[6] for purified 110-kDa APN using a
separate technique (7.6 nM). In the aforementioned
study, an ELISA assay was used to indirectly calculate af-
finity by incubating receptor-bound toxin with a peroxi-
dase-conjugated anti-Cry1Aa antibody over 1.5 hours at
37°C. It is possible that the difference in binding con-
stants reflects our condition of more direct receptor-
binding measurement in "real-time", as well as the dif-
ferent binding buffers and temperature used.

Yaoi et al.[21] estimated the toxin-binding region of B.
mori APN to be between Ile135 and Pro198 based on tox-
in blot overlays with protease-digested APN fragments.
BLAST sequence alignments [22] yielded 81% identity
and 96% similarity between this 63 residue stretch and
the homologous region of M. sexta APN-1, which also
binds Cry1Aa toxin (Jenkins, unpublished observation).
Interestingly, in L. dispar APN-1, which does not bind
Cry1Aa, the same stretch is only 37% identical and 56%
similar (4% unaligned gaps). These results appear to
support the findings of Yaoi et al.[21]. However, Helio-
this virescens (tobacco budworm) APN is only 45% iden-
tical and 53% similar to B. mori APN, yet it binds Cry1Aa
toxin with high affinity [23]. Moreover, sequence align-
ments with APN from Lactobacillus, Streptococcus, Sac-
charomyces, Arabidopsis, rat, pig, yeast, and human
yielded more similarity than H. virescens APN to the pu-
tative Cry1Aa-binding region of B. mori APN. It is likely
that as the X-ray crystal structures of APNs are solved,
structural alignments of APNs will help resolve the spe-
cificity-determining regions more accurately. Addition-
ally, structural information will aid in the rational
construction of toxins with reduced binding for benefi-
cial insects without losing activity to target pests. In this
context a unique Cry1Aa binding epitope within domain
IT has been identified that, when mutated, results in spe-
cific reduction of toxicity to B. mori (You, et al., unpub-
lished manuscript). The application of protein
engineering to B. thuringiensis insecticidal proteins is
entering a new era of tailoring pesticides with reduced
activity to beneficial insects as well as increasing activity
against pest insects [24].

Conclusions

Domain II of Cry1Aa is both necessary and essential for
tight binding to two B. mori midgut receptors, the cad-
herin-like and aminopeptidase N receptors, a finding
that correlates with biological activity data. The Cry1Aa
binding affinity, as well as the dissociation rate for the
cadherin-like receptor, are the lowest measured using
the surface plasmon resonance technique. The SPR
method presented here may be useful for screening other
Cry toxins or Cry toxin variants specifically engineered to
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reduce or eliminate specificity for receptors from this
non-target insect.

Materials and methods

Mutant toxin construction and preliminary analysis
Hybrid toxin 4109 consisting of domains I and II of
Cry1Aa and domain III of Cry1Ac was constructed as pre-
viously described [3]. Force-feeding bioassays on B. mori
and BBMV binding assays were conducted as described
[4]. Crystal proteins were solubilized and trypsinized,
and active toxins were column purified as carried out
previously [19].

Receptor purification

B. mori midguts were dissected from 4th or 5th instar lar-
vae and brush border membrane vesicles were prepared
by the Wolfersberger method [25]. B. mori BBMV (10 mg
in 10 ml) was solubilized in 5 mg/ml CHAPS zwitterionic
detergent (Roche) overnight at 4°C with gentle rocking.
Solubilized BBMV was centrifuged at 10,000 x g for 10
min and supernatant was concentrated to 2 ml by Ami-
con YM30 ultrafiltration. The sample was then loaded on
a Q Sepharose HR 10/30 anion-exchange column. All
column chromatography was carried out on an AKTA
Explorer (Amersham Pharmacia Biotech). Low salt buft-
er (buffer A) consisted of 20 mM Tris, 5 mM MgCl, 0.4
mg/ml CHAPS, pH 8.6, and the high salt buffer used was
buffer A containing 1 M NaCl. A step gradient of salt was
used to elute BBMV proteins. All fractions were tested
for APN enzymatic activity by the LpNA assay. Briefly,
390 ul of sample are mixed with 10 ul of 2 mM leucine-p-
nitroanilide (containing a leucine-phenylalanine dipep-
tide). A yellow chromophoric change indicates ami-
nopeptidase N activity, defined as the ability to cleave a
neutral amino acid from the N-terminus of a polypep-
tide. Cry1Aa binding ability was also checked by slot blot-
ting fractions to PVDF membrane and probing with
biotinylated Cry1Aa [26]. Fractions with Cry1Aa-binding
ability and APN enzymatic activity were concentrated to
2 ml volumes and loaded on a Superdex 200 size-exclu-
sion column (120 ml bed volume) using Hepes-buffered
saline (HBS; 10 mM Hepes, 150 mM NaCl, 3.4 mM ED-
TA, pH 7.4) as running buffer. Absorbance was moni-
tored at 280 nm and 260 nm to judge protein purity of
collected peaks relative to flow through. Fractions elut-
ing around 115—120 kDa, the MW of APN, were collected
and protease inhibitors were added after a final concen-
tration. Anion-exchange fractions with Cry1Aa-binding
ability but without APN enzymatic activity were also
size-purifed, and fractions eluting around 175-250 kDa,
the MW of BtR175, were collected and concentrated. Ap-
proximately 0.10 mg (in 0.25 ml) of cadherin-like recep-
tor and 0.30 mg of APN (in 1 ml) were obtained.
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Analysis of receptor purity

Candidate receptor fractions were analyzed by 10% SDS-
PAGE (40 pl/lane) and stained with Coomassie brilliant
blue. For slot blot assays, 5 g of M. sexta or B. mori BB-
MVs and 40 pl of candidate receptor fractions were blot-
ted onto PVDF membrane and assays was carried out as
reported previously [27], except for using 1:1000 anti-Bt-
R, polyclonal antiserum. For ligand blot assays, samples
separated by SDS-PAGE (9%) were transferred to PVDF
overnight, blocked with 5% dried milk in TTBS (50 mM
Tris-HCI, 150 mM NacCl, 0.05% Tween 20, pH 7.5). Sam-
ples were probed with 50 pg biotin-Cry1Aa and strepta-
vidin-conjugated horseradish peroxidase for 1 hr each,
with 45 min TTBS washes, and developed in DAB/Urea
(BioRad).

Surface plasmon resonance with purified midgut receptors
B. mori APN and cadherin were immobilized on a CM5
sensor chip by the amine-coupling method (Biacore AB).
Receptors were diluted into ammonium acetate, pH 4.2
prior to immobilization. An HBS (pH 7.4) buffer flow
rate of 50 l/min was used for all injections. Randomized
toxin concentrations varying from 100 nM to 1000 nM
were injected (110 ul) over the receptor surfaces. Surfac-
es were regenerated with 6 ul pulses of 10 mM NaOH,
250 uM ethylene glycol, pH 11.0 at 100 pl/min. Signal re-
sponses from a blank flowcell containing ethanolamine
as a blocking agent were subtracted from all response
curves and data were fitted using BIAevaluation 3.0. The
curves were fit to a simple 1:1 Langmuir binding model to
obtain apparent rate constants (A + B <> AB).

List of abbreviations

Bt, Bacillus thuringiensis; APN, aminopeptidase N; GPI,
glycosyl-phosphatidylinositol; BBMV, brush border
membrane vesicles; LpNA, leucine-p-nitroanilide;
PIPLC, phosphatidylinositol-specific phospholipase C;
HBS, Hepes-buffered saline; SPR, surface plasmon reso-
nance
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