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Abstract
Background:  Plasma lipases and lipid transfer proteins are involved in the generation and
speciation of high density lipoproteins. In this study we have examined the influence of plasma
lipases and lipid transfer protein activities on the transfer of free cholesterol (FC) and phospholipids
(PL) from lipid emulsion to human, rat and mouse lipoproteins. The effect of the lipases was verified
by incubation of labeled (3H-FC,14C-PL) triglyceride rich emulsion with human plasma (control,
post-heparin and post-heparin plus lipase inhibitor), rat plasma (control and post-heparin) and by
the injection of the labeled lipid emulsion into control and heparinized functionally hepatectomized
rats.

Results:  In vitro, the lipase enriched plasma stimulated significantly the transfer of 14C-PL from
emulsion to high density lipoprotein (p<0.001) but did not modify the transfer of 3H-FC. In
hepatectomized rats, heparin stimulation of intravascular lipolysis increased the plasma removal of
14C-PL and the amount of 14C-PL found in the low density lipoprotein density fraction but not in
the high density lipoprotein density fraction. The in vitro and in vivo experiments showed that free
cholesterol and phospholipids were transferred from lipid emulsion to plasma lipoproteins
independently from each other. The incubation of human plasma, control and control plus
monoclonal antibody anti-cholesteryl ester transfer protein (CETP), with 14C-PL emulsion showed
that CETP increases 14C-PL transfer to human HDL, since its partial inhibition by the anti-CETP
antibody reduced significantly the 14C-PL transfer (p<0.05). However, comparing the
nontransgenic (no CETP activity) with the CETP transgenic mouse plasma, no effect of CETP on
the 14C-PL distribution in mice lipoproteins was observed.

Conclusions:  It is concluded that: 1-intravascular lipases stimulate phospholipid transfer protein
mediated phospholipid transfer, but not free cholesterol, from triglyceride rich particles to human
high density lipoproteins and rat low density lipoproteins and high density lipoproteins; 2-free
cholesterol and phospholipids are transferred from triglyceride rich particles to plasma
lipoproteins by distinct mechanisms, and 3 - CETP also contributes to phospholipid transfer activity
in human plasma but not in transgenic mice plasma, a species which has high levels of the specific
phospholipid transfer protein activity.
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Background
There have been plenty of epidemiological, clinical and

experimental evidence that plasma high density lipopro-

teins levels are inversely correlated with the risk of
atherosclerosis [1,2]. The contribution of enzymes and

proteins associated with HDL to its process of generation

and maturation have been extensively studied, both in

vitro and in vivo.

The plasma cholesteryl ester transfer protein (CETP)

modulates HDL levels and composition. It mediates the

transfer of cholesteryl ester (CE) from HDL to triglycer-

ide (TG) rich lipoproteins (LP), while TG is transferred in

the opposite direction, to HDL. One way CE transfer

from HDL to LDL may also occur [3]. CETP also pro-

motes phospholipid (PL) transfer to human HDL [4,5,6].

CETP activity has been directly correlated with LDL cho-

lesterol levels and inversely correlated with HDL choles-

terol levels in human plasma [3,7].

PLTP, a specific phospholipid transfer protein, has been

identified in human plasma [8,9] and in plasma of other

vertebrate species [10]. It promotes the PL transfer from

VLDL to HDL [11]. In addition to PL, PLTP transfers free

cholesterol (FC) from PL/FC vesicles to HDL, although

with a low efficiency [12]. Both, CETP and PLTP, can

promote HDL remodelling. While CETP, together with

hepatic lipoprotein lipase, stimulates the generation of

small alpha-HDL, PLTP favours the emergence of large
alpha-HDL particles [13]. Significantly higher levels of

HDL-cholesterol were observed in human PLTP trans-

genic mice [14]. Furthermore, overexpression of human

PLTP produced by recombinant adenovirus injection

into mice, resulted in increased levels of prebeta-HDL,

increased fractional catabolic rate and liver uptake of CE

and PL from HDL [15].

After intravascular hydrolysis of TG rich LP by lipopro-

tein lipase (LPL), surface remnant components such as

FC, PL and apoproteins may provide substrates for gen-

eration or modification of plasma HDL. Net transfer of

PL and FC from chylomicrons and VLDL to HDL has pre-

viously been demonstrated in rats [16,17] and in human

plasma after a fat meal [18,19] or during lipolysis [11].

The contribution of the lipolysed LP components to HDL

formation has been reinforced by several studies where

the activity of the enzyme lipoprotein lipase LPL was

shown to correlate with HDL cholesterol levels in human

plasma [20,21,22]. However, changes in the HDL-cho-

lesterol concentration have not been observed in mice

overexpressing LPL [23] or in LPL heterozygous knock-

out mice [24].

The metabolism of HDL in rats and mice differs signifi-
cantly from that in humans. Part of the species differenc-

es observed in mice and in rats may result from their

high levels of circulating lipases [25,26], lack of CETP

[27] and high levels of PLTP [10]. Clee et al. [28] have

shown that, in double transgenic mice overexpressing
LPL and CETP, HDL cholesterol levels were significantly

influenced by the LPL activity while no such correlation

was observed in the absence of CETP expression.

In this study we have further evaluated the influence of

plasma lipases and CETP on the free cholesterol and

phospholipid transfer from triglyceride rich lipid emul-

sion similar to chylomicrons [29,30] to human, rat and

mouse lipoproteins, in vitro and in vivo.

Results
The influence of the intravascular lipase activity on the

phospholipids (PL) and free cholesterol (FC) transfer

from lipid emulsion (EM) to plasma lipoproteins was

evaluated in human control plasma, in lipase-enriched

post-heparin plasma and in post-heparin plasma con-

taining a lipase inhibitor, tetrahydrolipstatin (THL) [34].

PL transfer was determined after 30 minutes of incuba-

tion because Tall et al. [8] have demonstrated that PL net

transfer reaches the maximum after this incubation peri-

od. The post-heparin plasma lipoprotein lipase (LPL)

and hepatic lipoprotein lipase (HL) activities were 2527

± 1353 and 3747 ± 2116 nmol of fatty acid/ml/h, respec-

tively. The control and post-heparin + THL plasmas had

no detectable lipase activity, showing that 2 mM THL
completely inhibited the activities of the lipases present

in the post-heparin plasma. Table 1 shows that 14C-PL

was preferentially transferred to HDL (p<0.001) while
3H-FC was equally distributed to LDL and HDL fractions

under all 3 plasma conditions. The transfer of 14C-PL

from EM to HDL was significantly stimulated (+60%) by

the increase in the lipases' activities in the post-heparin

plasma (p<0.001). This stimulation of the PL transfer

was abolished in the presence of THL (p<0.01). Consid-

ering that HL also has phospholipase activity, the integ-

rity of the phospholipid transferred to HDL was checked

by thin layer chromatography. Ninety eight % of the 14C-

PL was recovered in the PL band and no radioactivity

was detected in the fatty acid bands. The proportion of
3H-FC and 14C-PL found in HDL (0.4) was different from

that found in LDL (2.3) or in the EM (1.5), which sug-

gests that these components of the EM were independ-

ently transferred to the LP fractions and not as a surface

unit detached from the lipolysed EM.

The effect of plasma lipases on the PL transfer to HDL

was also verified by incubating labeled EM with plasma

from control and heparinized rats. Figure 1 shows the
14C-PL distribution in the LP fractions at zero (ice) or af-

ter 30 minutes at 37°C. In the control rat plasma (Fig. 1,
upper panel) at time zero, the distribution of 14C-PL was
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60, 13, 22 and 6% for VLDL, LDL, HDL and a fraction

smaller than HDL (<HDL), respectively, while after 30

minutes at 37°C, the observed distribution was 22, 14, 57
and 8% for VLDL, LDL, HDL and fraction <HDL, respec-

tively. It is interesting that PL transfer to HDL can be ob-

served even at time zero. This may represent the

combination of the spontaneous and facilitated transfer

that occurs during and even after loading the reaction

mixture to the FPLC column run at room temperature.

Furthermore, rat plasma contains circulating lipases

[25,26] that could be stimulating PL transfer in the con-

trol plasma. In the rat post-heparin plasma (Fig. 1, lower

panel), the 14C-PL transfer was so much accelerated that

the distributions at zero and after 30 minutes of incuba-

tion at 37°C were almost identical, that is, 12, 29.5, 32.5

and 26.5% at zero and 7, 31, 29.5 and 32.5% at 37°C for

Figure 1
Influence of plasma lipases on the distribution of the 14C-PL from lipid emulsions into rat plasma lipoproteins. Control (upper
panel) and heparin treated (lower panel) rat plasmas were incubated with lipid emulsion labeled with 14C-phospholipids (PL) at
zero (on ice) (open triangles) or for 30 minutes at 37°C (closed triangles), and fractionated by fast protein liquid chromatogra-
phy. Cholesterol mass in each fraction (O.D.500 nm) is shown in the dotted line profile.
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VLDL, LDL, HDL and fraction <HDL, respectively. HDL

and the fraction smaller than HDL together accounted

for 59 to 62% of the 14C-PL. Thus, comparing the PL moi-

ety that remained in the emulsion fraction in the control
at 37°C (Fig 1 upper, 22%) with the post-heparin plasma

at 37°C (Fig 1 lower, 7%), we conclude that PL transfer to

LDL and HDL fractions is highly stimulated by the en-

richment of the rat plasma with the vascular lipases. We

did not investigate the chemical nature of the fraction

smaller than HDL but we speculate that it derives from

HDL phospholipids or from the emulsion surface itself,
and might be lysophospholipids/albumin or phospholip-

ids/apo AI complexes.

In an attempt to evaluate the PL and FC transfer to HDL

in a biological system, we injected the radioactive EM

(3H-PL/14C -FC) into anesthetised functionally hepatec-

tomized rats treated with saline (control) or heparin

(LPL stimulated). The liver exclusion maneuver was

done in order to minimize the differences in the resi-

dence time of the emulsion particles in the circulation of

the control and LPL stimulated rats. The hepatectomy ef-

ficacy was verified by the amount of 3H-PL found in the

livers at the end of the experiments; that was 1% and 3%

of the injected dose in control and heparinized animals,

respectively. There was a lower recovery of the labeled

PL in the plasma of the heparinized animals (∼ 50%)

than in control rats (∼ 90%). This suggests that the
heparin stimulated lipolysis increased the plasma re-

moval of PL by peripheral tissues. Table 2 shows the dis-

tribution of 3H-PL and 14C-FC from the EM into the

plasma LP of control and heparinized hepatectomized

rats. When intravascular lipolysis was stimulated by

heparin, there was a 50% reduction of the 3H-PL content

in the chylomicron (CM) + VLDL fraction (d<1.006) and

a parallel increase in the LDL fraction that also includes

remnant particles (d= 1.006 to 1.063). No significant dif-

ference was observed in the amount of 3H-PL found in

the HDL fraction of control and heparinized hepatect-

omized rats. A similar result was observed in relation to

the 14C-FC distribution, i.e., a reduction trend of 14C-FC

in the CM+VLDL fraction (non significant) and a signif-

icant increase of 14C-FC transfer to the LDL fraction.

However, in both cases, control and heparinized ani-

mals, the ratio 14C-FC/3H-PL differs markedly in the

three LP fractions (Table 2). This indicates that, in vivo,

the redistribution of the two emulsion surface lipids is

independent one from another.

In order to verify the influence of CETP in the PL transfer

to HDL, labeled emulsion was incubated with human

plasma in the presence and absence of monoclonal anti-

body against CETP (TP2) and with plasma from CETP

transgenic and non-transgenic mice. The CETP activity

in these plasmas were 38 and 16% of cholesteryl ester

transfer (4 h assay) respectively for human plasma with-
out and with TP2, and 5 and 20% of cholesteryl ester

transfer (2 h assay), respectively for nontransgenic and

human CETP transgenic mice plasma. Table 3 shows

that 14C-PL transfer from lipid emulsion to human HDL

was reduced 40% (p<0.005) when CETP activity was in-

hibited 58%, indicating that CETP has PL transfer activ-

ity as previously reported [5]. However, the 14C-PL

distribution in mice LP after incubation with the 14C-PL

EM was almost identical for CETP transgenic and non-

transgenic mice plasma (Fig. 2). The human CETP ex-

pressed in these mice might not efficiently interact with

the endogenous mice HDL. To check this possibility an

exogenous assay was performed using human HDL (240

ug cholesterol) as PL acceptor and minimal amounts of

Table 1: Influence of plasma lipases on the 3H-free cholesterol (FC) and 14C-phospholipid (PL) transfer from lipid emulsions to the hu-
man plasma lipoproteins.

Fractions Control Post-heparin Post-heparin + THL

3H-FC 14C-PL 3H-FC 14C-PL 3H-FC 14C-PL

LDL 15 7 21 7 20 6
(2-35) (3-49) (15-26) (2-13) (17-34) (1-12)

HDL 13 31a 18 50a,b 15 39a,c

(7-28) (18-47) (12-36) (35-68) (8-33) (23-48)

Percent transfer of 3H-FC and 14C-PL from lipid emulsion to LDL and HDL obtained from fasting human plasma control, post-heparin with and with-
out addition of a lipase inhibitor, tetrahydrolipstatin (THL) incubated for 30 minutes at zero (ice) and at 37°C. Plasma lipoproteins were fractionated 
by FPLC. Percent transfer was calculated as the difference between values obtained at 37°C and 0°C. Results are expressed as median (range), n=12. 
Mann-Whitney test: a: p< 0.001 (HDL vs. LDL) ; b: p<0.001 (post-heparin vs. control) and c: p<0.01 (post-heparin vs. post-heparin+THL).
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CETP transgenic and non-transgenic mice plasma (50

ul) as sources of CETP and of PLTP. Results obtained

(data not shown) were identical to those of the endog-

enous assay (fig. 2). Therefore, human CETP in trans-

genic mice plasma does not contribute to PL transfer to

either mice or human HDL.

Discussion
Several studies, using different experimental approach-

es, have shown that the transfer of surface components

of TG-rich lipoproteins during their intravascular me-

tabolism is important to determine both level and chem-

Figure 2
Influence of CETP on the distribution of the 14C-PL from lipid emulsions into mice plasma lipoproteins. Control non-transgenic
(upper panel) and CETP transgenic (lower panel) mice plasmas were incubated with lipid emulsion labeled with 14C-phospholi-
pids (PL) at zero (on ice) (open triangles) or for 30 minutes at 37°C (closed triangles), and fractionated by fast protein liquid
chromatography. Cholesterol mass in each fraction (O.D.500 nm) is shown in the dotted line profile.
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ical composition of the HDL subfractions. The present

work has confirmed and extended previous observations

showing that human and rat plasma lipoprotein lipases

stimulate PLTP mediated PL transfer from TG-rich par-
ticles to HDL but do not influence the FC transfer proc-

ess. Some of the previous studies [11,35,36,37,38] that

used purified exogenous lipases in in vitro incubations

with isolated LP displayed a potent stimulation of the PL

transfer to HDL. In order to prepare a model that would

mirror a physiological system more closely, we have used

whole plasma and maximal endogenous lipases activity

through heparin administration in vivo as well as in vit-

ro. It is possible that other proteins released by heparin

in the vascular bed may have played a role in stimulating

PL transfer. The role of circulating lipases was confirmed

through the use of a lipase inhibitor (THL), which abol-

ished the stimulating effect of lipase-enriched plasma on

the PL transfer to HDL (Tab. 1). According to these ex-

periments it is likely that during fasting state, where no

circulating lipases are detectable, all PL transfer results

from the action of the lipid transfer proteins, PLTP and
CETP, while in a post-prandial state, when lipases ex-

pectedly are more active, the PL transfer to HDL could be

raised by 60% or more due to a greater substrate supply .

Noteworthy the in vitro PL transfer to HDL in the basal

plasmas of rat (fig. 1, 82%) and mouse (fig. 2, 57%) was

higher than in the human's (Tab. 1, 31%) and could be as-

cribed to the high levels of circulating lipases [26,39,40]

and PLTP [10] found in those species. This could also ex-

plain the positive correlation between the lipoprotein li-

pase activity and HDL concentration in human plasma

[20,21,22] but not in mice with genetically modified ex-

pression of LPL [23,24,28].

The in vivo studies showed that the EM PL transfer to

HDL did not differ in control and in LPL stimulated

(heparin treated) hepatectomized rats. Instead, the LDL

density fraction was PL enriched in the heparinized ani-

mals. This could be explained by several and not exclu-

sive possibilities. First, the lipolysis stimulation by

heparin generates more remnants of the EM that would

float in the same density range as LDL (1.006 - 1.063).

Second, the rat plasma fraction smaller than HDL that

appeared in the in vitro incubations with post-heparin

plasma (Fig. 1) could also occur in vivo and float in the

same density range as LDL (1.006 -1.063). In this regard,

O'Meara et. al. [41] had shown that small HDL particles

from heparinized hypertriglyceridemic subjects, identi-

fied in non-denaturing gel electrophoresis and by elec-

tron microscopy, floated after ultracentrifugation in a

Table 2: Influence of plasma lipases on the distribution of 14C-free cholesterol (FC) and 3H-phospholipid (PL) from lipid emulsions to 
plasma lipoproteins of hepatectomized rats in vivo.

Fractions Control Heparinized

14C-FC 3H-PL 14C-FC 3H-PL

CM+ VLDL 61 36 47 16a

(53 - 74) (27 - 61) (43 - 55) (14 - 22)
LDL + remnants 20 22 34b 38c

(11 - 24) (10 - 26) (29 - 38) (33 - 42)
HDL 19 42 18 46

(15 - 23) (29 - 47) (14 - 22) (40 - 51)

Percent distribution of 14C-FC and 3H-PL from lipid emulsion to VLDL, LDL and HDL plasma fractions from anesthetized hepatectomized rats treat-
ed with saline (control) or heparin after 30 minutes of an intra-arterial injection of the labeled emulsion. Lipoprotein fractions were obtained by 
ultracentrifugation. Results are expressed as median (range), n=4. Mann-Whitney test for heparin vs. control comparisons: a: 3H-PL - CM+VLDL, p 
< 0.03; b: 14C-FC - LDL, p < 0.03; c: 3H-PL - LDL, p < 0.03.

Table 3: Influence of CETP on the 14C-phospholipid (PL) transfer 
from lipid emulsions to the human plasma lipoproteins.

Fractions Control +TP2

LDL 4 (0 - 6) 0 (-5 - 1)
HDL 30a (26 - 38) 18a,b (16 - 27)

Percent transfer of 14C-PL from lipid emulsion to LDL and HDL ob-
tained from fasting human plasma without (control) and with CETP 
monoclonal antibody, TP2, incubated for 30 minutes at zero (ice) and 
at 37°C. Plasma lipoproteins were fractionated by FPLC. Percent trans-
fer was calculated as the difference between values obtained at 37°C 
and 0°C. Results are expressed as median (range), n=6. Mann-Whitney 
test: a: p<0.001 (HDL vs. LDL), b: p<0.05 (TP2 vs. control).
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less dense range. Those authors had considered it an ab-

errant result of the ultracentrifugation technique. Third,

the diminished availability of PL donor particles in the

plasma of the heparinized rats (yield of 50%) as com-
pared to control rats (yield of 90%) would be responsible

for the apparent lack of stimulation of the PL transfer to

the HDL fraction. Finally, other in vivo metabolic fates of

PL would compete for the transfer process to plasma

HDL particles in LPL stimulated animals.

The emulsion FC transfer to HDL was about 40% that of

PL in both, in vitro (Tab. 1) and in vivo (Tab. 2) studies

and it was not influenced by increased rate of intravascu-

lar lipolysis. These results suggest that the FC transfer is

a slower, probably passive, process distinct from the fa-

cilitated PL transfer mechanism [8,9]. Also, these results

challenge the possibility that new HDL particles are

made from the EM surface peeling off during lipolysis

because the relative PL/FC ratio was higher in HDL than

in the CM+VLDL and emulsion fraction. Others also

have shown that FC transfer to HDL is a slow process: FC

increases in the HDL fraction only 5 to 8 h after a fat

meal [19] or only after 2 h incubation of HDL with VLDL

and purified rat heart LPL [36].

We have also confirmed previous studies [5] claiming

that PL transfer from TG-rich particles to human HDL is

facilitated by CETP, since its partial inhibition signifi-

cantly reduced the PL transfer (Table 3). However, hu-
man CETP expressed in the transgenic mice plasma had

no effect whatsoever on the PL transfer to mouse plasma

lipoproteins or to human HDL. This lead us to admit that

the mouse plasma PL transfer activity is so potent that

some additional protein (CETP) with PL transfer activity

would be irrelevant in an already saturated in vitro sys-

tem.

In summary, the present findings indicate unequivocally

the importance of the intravascular lipolytic mechanisms

for the PLTP and CETP facilitated PL, but not FC, trans-

fer process from TG-rich particles to HDL. PL enriched

HDL would be more efficient in promoting FC efflux

from cell membranes, hence accelerating the reverse

cholesterol transport. These may provide the basis for

the mechanism that accounts for the inverse correlation

between HDL and TG plasma levels found in epidemio-

logical studies in human populations as well as in several

circumstances where plasma lipid levels are modified by

pharmacological and dietary means.

Materials and Methods
Lipid emulsions
Cholesterol (FC), cholesteryl oleate (CO) and triolein

(TO) were obtained from NuCheck Prep (Elysian, MN,

USA) and lecithin (PL) from Lipid Products (Surrey,UK).

They were more than 99% pure as tested by thin layer

chromatography. Lipid mixtures (2% FC, 6% CO, 23%PL

and 69%TO by weight) together with 130 µCi of L-α-dio-
leoyl [1-14C]-phosphatydylcholine and 25 µCi of [1,2-
3H(N)]-cholesterol (New England Nuclear, Boston, MA,

USA) were sonicated in 2.785 M NaCl solution (d=1.101

g/ml) utilizing a Branson Cell Disruptor (Branson Ultra-

sonics Corp., Danbury, CT, USA), model B30, 1 cm

probe, with continuous output of 70-80 W, at aproxi-

mately 55°C, for 30 minutes, under N2 flow. Triglycer-

ide-rich particles were purified after discontinuous

gradient ultracentrifugation of NaCl solutions with den-

sities 1.065, 1.020 and 1.006 g/ml. A first step of 12000

rpm for 15 min in a SW41 Beckman rotor at 22°C was
performed to discard the floating coarse lipid. After re-

placing the 1.006 solution, the gradient was again centri-

fuged at 36000 rpm, for 30 min at 22°C and the
emulsion particles were recovered from the top layer.

The lipid emulsion composition achieved was: 1% FC, 4%

CO, 14% PL and 81% TO. These particles resemble native

chylomicrons [29]. By gel filtration (FPLC), 3H-FC, 14C-

PL and triglyceride co-eluted as only one peak corre-

sponding to the plasma VLDL size fraction (fractions #

13 to 17) on a HR 10/30 superose 6 column (Pharmacia

Biotech, Uppsala, Sweden).

Sources of plasma
Human blood samples from 12 fasted healthy volunteers
(5 men and 7 women, total cholesterol and triglycerides

< 200 mg/dl), were drawn on EDTA, pre (basal) and 10

min after an I.V. bolus injection of heparin (100 U/kg

BW). Male Wistar rats, approximately 300 g, had their

carotid arteries cannulated under pentobarbital anesthe-

sia. After recovery, they received saline (control) or

heparin (LPL stimulated) and after 10 min they were ex-

sanguinated on EDTA. Adult male C57Bl6 and human

CETP transgenic mice (line 5203), derived from the col-

ony of Dr AR Tall's Laboratory (Columbia University,

NY, USA) were bled with heparinized hematocrit capil-

lary tubes in the retro-orbital plexus under ketamine an-

esthesia (Vetarnacol, Konig, SP, Brazil). All plasmas

were obtained by centrifugation at 2000 rpm in a Sorval

RT6000B refrigerated centrifuge and freshly used.

Free cholesterol (FC) and phospholipid (PL) transfer assay
Control and treated plasmas (post-heparin, post-heparin

+ lipases inhibitor and control + CETP monoclonal anti-

body, TP2, provided by Dr. AR Tall) were incubated with

lipid emulsion (∼ 700 µg of triolein/ml) labeled with 3H-

FC (106 dpm/ml) and 14C-PL (2 × 105 dpm/ml) at zero

(on ice, "time zero") and for 30 minutes at 37°C. Plasma

lipoproteins were next separated by fast protein liquid

chromatography (FPLC) as described by Jiao et al. [31].
Briefly, plasma samples (200 µl) were fractionated on a
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HR 10/30 Superose 6 column (Pharmacia Biotech, Upp-

sala, Sweden) using a constant flow of 0.5 ml/min of tris-

buffered saline, pH 7.2. Sixty fractions of 0.5 ml were au-

tomatically collected. 3H- and 14C- dpm of each FPLC
fraction was determined by liquid scintilation in a beta

counter Beckman LS6000TA. As we have measured only

radioactive FC and PL, the term "transfer" is used to de-

scribe either net transfer or exchange process among LP.

Total cholesterol was also determined in the fractions

#10 to 40 by an enzymatic assay in an automatic analyzer

Cobas (F. Hoffman-La Roche, Basileia, Switzerland) us-

ing Boehringer Mannheim reagents (Mannheim, Germa-

ny).

In Vivo studies
Male Wistar rats, weighing ∼ 300 g were anesthetised
with pentobarbital ip (50 mg/Kg BW). The right carotid

artery was cannulated with a PE 50 siliconized catheter

and after laparostomy, the liver hilum was ligated. Phys-

iologic solution (control) or heparin (250 U/Kg BW) in a

final volume of 0.25 ml was injected through the carotid

catheter. After 10 minutes, labeled lipid emulsion (4 ×
105 dpm of 3H-PL and 7 × 105 dpm of 14C-FC) was inject-

ed intra-arterially. After 30 minutes, the animals were

exsanguinated by the carotid catheter and plasma lipo-

proteins were immediately separated by ultracentrifuga-

tion in a discontinuous gradient. Plasmas were adjusted

to density (d) 1.21 g/ml with solid KBr and overlayed

with solutions of d=1.063 and 1.006 g/ml and centri-
fuged for 24 h in a SW 41 rotor, at 4°C, 100000 × g, in a
L8 Beckman ultracentrifuge. Lipoproteins fractions were

collected from the top to bottom by vacuum as follow: 1.5

ml VLDL (d<1.006), 2.5 ml LDL (d = 1.006 - 1.063) and

7.5 ml HDL (d>1.063). Radioactivity was determined in

aliquots from each lipoprotein fraction.

Intravascular Lipases Activity
Total lipase activity was determined according to Ehn-

holm & Kuusi [32]. Briefly, overnight fasted human plas-

mas, collected pre (basal) and 10 minutes after heparin

I.V. injection (100 U/Kg body weight), were incubated

with a 3H-triolein/arabic gum substrate ([9,10 3H (N)]-

triolein, New England Nuclear, Boston, MA) in 0.2 M

Tris-HCl buffer, pH 8.5, 37ºC, during 1 hour. Hepatic li-

pase (HL) activity was determined in tubes where the li-

poprotein lipase (LPL) was inhibited by 2 M NaCl. The

hydrolyzed labeled free fatty acids were extracted with

methanol / chloroform / heptane (1.4 : 1.25 : 1), 0.14 M

K2CO3 / H3BO3, pH 10.5, dried under N2, and their radi-

oactivity was determined in a liquid scintillation solution

in a LS6000 Beckman Beta Counter. The LPL activity

was calculated as the difference between the total lipase

and the hepatic lipase activities.

Cholesteryl ester transfer protein activity assay
A mixture of human VLDL and LDL protein (100 µg)
were incubated with 10000 dpm of human HDL3 labeled

with [14C]-cholesteryl ester (CE) [33] and 5 µl of diluted
CETP transgenic mice plasma or undiluted human plas-

ma as the source of CETP in a final volume of 100 µl.
Blanks were prepared with tris/saline/EDTA buffer (10

mM/140 mM/1 mM), pH 7.4, and negative controls with

non-transgenic mice plasma. The incubations were car-

ried out at 37°C for 2 or 4 hours. After these periods, the
apo B containing lipoproteins were precipitated using a

mixture of 1.6% dextran sulfate / 1 M MgCl2 solution

(1:1) and the radioactivity was measured in the remain-

ing supernatant in scintillation solution Ultima Gold

(Eastman Kodak Co., NY) in a LS6000 Beckman Beta

Counter. The % CE transferred from [14C]-CE-HDL to

VLDL+LDL was calculated as: (dpm in the blank tube -

dpm in the plasma sample / dpm in the blank tube) ×
100.

Statistical analysis
All comparisons were analysed by the non-parametric

Mann-Whitney test using the GraphPad Prism, version

2.01 (1996) program. Differences were considered signif-

icant when p<0.05.
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