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Abstract

transcription factors.

Background: Steroid Receptor coactivator 3(SRC3) is an oncogene and a member of the SRC family of nuclear
receptor coactivator proteins that mediate the transcriptional effects of nuclear hormone receptors as well as other

Results: We have used protein purification and mass spectrometry to identify the 53BP1 tumour suppressor as a
novel SRC3-associated protein. Copurification was demonstrated using multiple antibodies, and was not dependent
on DNA damage suggesting that SRC3 is not directly involved in the DNA damage response. However using
chromatin immunoprecipitation(ChiP) and siRNA knockdown, we have demonstrated that both SRC3 and 53BP1
co-occupy the same region of the BRCAT promoter and both are required for BRCAT expression in Hela cells.

Conclusions: Our results suggest that both 53BP1 and SRC3 have a common function that converge at the BRCA1
promoter and possibly other genes important for DNA repair and genomic stability.

Background

The steroid receptor coactivator 3 (SRC3) (also known
as p/CIP/AIB1/ACTR/NCoA3) is a member of the SRC
family of proteins which bind to nuclear hormone
receptors, and other transcription factors, to promote
coactivator complex assembly at target genes [1-6]. This
is accomplished through direct protein interactions
mediated by several structural domains conserved
among all of the SRC family members. These domains
include a basic helix-loop-helix Per/ARNT/SIM (bHLH-
PAS) domain, a nuclear receptor interacting domain
which consists of three leucine-rich motifs with the con-
sensus amino acid sequence LxxLL (X = any amino acid
and L = leucine), and two transcriptional activation
domains (AD1 and AD2) within the carboxy terminus
of SRC3. The AD1 domain interacts directly with var-
ious protein acetyltransferases such as CBP/p300, or p/
CAF/GCN5 and is absolutely essential for SRC3-
mediated transcriptional activation [1,2,7-10]. A second
transactivation domain (AD2) serves as an interaction
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surface for several members of the protein arginine
methyltransferase (PRMT) class of enzymes such as the
coactivator associated arginine methyltransferase 1
(CARM1, also known as PRMT4) and PRMT1 [11,12].
CARM1 interacts directly with the AD2 domain of all
the SRC proteins and co-transfection assays using tran-
sient or stably integrated reporter genes have shown
that individual SRC proteins can synergize with p/300/
CBP and CARMI1 suggesting that the coordinated
recruitment of acetyltransferases and methyltransferases
by SRC3 may be complimentary to one another and
represent essential activating steps in nuclear receptor-
dependent gene transcription [13].

SRC3 function is also regulated by multiple cytoplas-
mic signalling events. Recent studies have identified
numerous post-translational modifications within SRC3
such as phosphorylation, acetylation, ubiquitination and
methylation [14-18]. Consequently, the type and specific
sites of covalent modifications in SRC3 determine the
affinity for the liganded-NR, as well the association with
different coactivating partners, resulting in the forma-
tion of diverse multimeric complexes which are believed
to regulate distinct gene expression programs.

SRC3 is located within a region of chromosome 20
that is often amplified in breast and ovarian cancer [3].
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Several studies have confirmed that SRC3 is amplified in
a significant fraction of breast tumours, with amplifica-
tion frequencies of approximately 10% [19-21]. A posi-
tive correlation has also been found between
amplification of SRC3 and increased expression of the
HER2 oncogene [22-24]. Patients whose tumours
expressed high levels of both p/CIP and HER-2 exhib-
ited the poorest survival rates and the worst responses
to tamoxifen therapy. In MCEF-7 cells, downregulation of
SRC3 using small interfering RNA (siRNA) decreased
Bestradiol-dependent cell proliferation and inhibited
expression of several ERa targets [25,26]. Importantly,
decreased expression of SRC3 in MCF-7 cells is asso-
ciated with a significant reduction in estrogen-depen-
dent colony formation and tumour growth in nude mice
[25,27]. Collectively, these results suggest that SRC3 is
required for maximum ER activation, and amplification
and overexpression of SRC3 is a contributing factor that
promotes ER-dependent signalling in the mammary
gland and in breast cancer. Transgenic mice overexpres-
sing SRC3 under the control of the MMTV promoter
have provided further evidence for its oncogenic capa-
city [28]. The mammary glands of SRC3 transgenic mice
were associated with increases in cell proliferation,
reduced apoptosis and a high tumour incidence.
Furthermore, increases in IGF-I mRNA levels and acti-
vation of IGF/AKT/mTOR signalling pathway were also
found in the mammary gland tumours.

In the present study, we purified SRC3 from Hela cell
nuclear extracts and using mass spectrometry, we have
identified the DNA damage response protein 53BP1 as a
novel SRC3-associated protein. The colocalization of
SRC3 and 53BP1 also included CBP based on copurifi-
cation, and was restricted to the nuclear compartment.
Colocalization of SRC3 and 53BP1 was not dependent
on DNA damage suggesting that SRC3 likely plays no
direct role in the DNA damage response. However,
using both chromatin immunorecipitation (ChIP) and
siRNA knockdown, we have determined that SRC3 and
53BP1 co-occupy the same region of the BRCA1 promo-
ter and are both required for BRCA1 expression in Hela
cells. These results suggest that the 53BP1/SRC3 com-
plex may play a role in modulating the DNA damage
response by regulating the expression of a subset of tar-
get genes important for DNA repair.

Results

To purify SRC3-associated proteins we combined con-
ventional and immunoaffinity chromatography using an
aSRC3 antibody [1] (Figure 1A). HeLa cell nuclear
extracts were prepared and fractionated on a P11 phos-
phocellulose column using a buffer containing increas-
ing salt concentrations. Western blot analysis of the
eluates derived from the P11 column indicated that
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SRC3 eluted in buffer containing 0.1 M KCI (data not
shown). The SRC3-containing fraction was then sub-
jected to further purification using gel filtration chroma-
tography followed by affinity purification using an o
SRC3 antibody crosslinked to Protein A Sepharose (Fig-
ure 1B). SDS-PAGE analysis followed by silver staining
detected several other proteins ranging in molecular
weight from 43 to 350 kDa (Figure 1C). The identity of
SRC3-associated proteins was found to vary between dif-
ferent purifications with the exception of the band
migrating at approximately 300 kDa which was consis-
tently observed in all of the independent purifications
performed and was identified by mass spectrometry as
the DNA damage response protein p53 binding protein
1 (53BP1). To confirm our mass spectrometry findings,
western blotting was performed using various antibodies
which demonstrated that SRC3, 53BP1 and the SRC3-
interacting protein Creb binding protein (CBP) were
specifically retained by the aSRC3 affinity column (Fig-
ure 1D).

To further confirm the association between SRC3 and
53BP1, the purification protocol shown in Figure 1A
was repeated using a53BP1 affinity column in place of
the aSRC3 affinity column. Fractionation of HeLa cell
nuclear extracts by phosphocellulose chromatography
demonstrated that 53BP1 was found in both the 0.1 M
and 0.3 M salt fractions suggesting that 53BP1 may be
found as a constituent of other protein complexes (Fig-
ure 2A). The 0.1 M KCl fraction, containing both SRC3
and 53BP1, was then subjected to further purification
using gel filtration chromatography. Elution from the gel
filtration column indicated that 53BP1 migrated with an
estimated molecular mass of approximately to 1 to 2
MDa and partially overlapped with the elution profile of
SRC3(Figure 2B). The fractions containing both 53BP1
and SRC3 were pooled and purified by affinity chroma-
tography using the a53BP1 antibody crosslinked to pro-
tein A Sepharose. Western blotting of the affinity
purified fractions using specific antibodies demonstrated
that this 53BP1 fraction also contained SRC3 and CBP
confirming that they are most likely found in the same
complex (Figure 2C). To determine if 53BP1 was able to
interact directly with SRC3, deletion mutants of various
region of 53BP1 were generated by in vitro transcription
and translation with [>°S]-methionine and tested for
interaction with purified recombinant SRC3 (Figure 3).
These experiments indicated that the carboxy terminus
of 53BP1, containing the BRCT domains, interacted
with full length SRC3, and a weaker interaction was
detected with the region corresponding to (aa 950-
1303). These results suggest that the carboxy terminus
of 53BP1 makes direct contact with full length SRC3.

Numerous studies have established that the primary
function of 53BP1 is in DNA damage response. When
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Figure 1 Purification of SRC3 from Hela cell nuclear extracts. (A) Purification scheme for the SRC3 protein (B) Western blot analysis
following affinity purification of SRC3. The SRC3-containing gel filtration fractions were pooled and passed through an IgG immunoaffinity
column or an aSRC3 immunoaffinity column; FT: flowthrough fraction. A 10 ul aliquot of the purified proteins were separated by SDS-PAGE gel
and western blotting was performed using o SRC3 antibody. (C) Silver stained SDS-PAGE gel of purified SRC3 and its associated proteins. IgG;
affinity purification using a rabbit IgG affinity column. (D) Western blotting using selected antibodies. 10-20 pl aliquots of either control or
affinity-purified SRC3 were separated by SDS-PAGE gel, transferred to nitrocellulose and probed with either SRC3, CBP or 53BP1 as indicated on
the left.

cells are exposed to agents which induce DNA double
stranded breaks such as etoposide, 53BP1 rapidly reloca-
lizes to discrete foci within the nucleus [29]. To define
the potential role of the SRC3 in the DNA-damage
response pathway, we investigated the effects of DNA
damage on the localization of SRC3. For these

experiments, Hela cells were treated with etoposide for
30 minutes, and the cells were allowed to recover, fixed
and stained for either SRC3 or 53BP1. As shown in Fig-
ure 4A, in asynchronously proliferating HeLa cells both
SRC3 and 53BP1 appear to be homogenously distributed
throughout the nucleus. Upon treatment with 10 nM
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Figure 2 Purification of 53BP1 from HelLa nuclear extracts. (A)
Phosphocellulose chromatography of Hela cell nuclear extracts.
Nuclear extracts were fractionated by p11 phosphocellulose
chromatography. Bound proteins were eluted by increasing
concentrations of KCI and analyzed for 53BP1 by western blotting.
(B) Gel filtration chromatography of 53BP1 and SRC3. The 0.1 M
phosphocellulosose fraction was concentrated and purified by gel
filtration chromatography. Fractions were collected and assayed by
western blotting using a53BP1 and aSRC3 antibodies. (D) Affinity
purification of 53BP1. The 0.1 M 53BP1 gel filtration fractions
containing SRC3 and 53BP1 were pooled and passed through an
a53BP1 affinity column. Bound proteins were eluted with 100 mM
glycine (pH 3.0), fractions were collected and aliquots were analyzed
using the specific antibodies indicated on the left.

etoposide for 30 minutes, 53BP1 becomes localized to
discrete foci. In contrast, the distribution of SRC3
remained unchanged when comparing the etoposide
treated cells to the control cells. Distribution was also
examined following gamma(y) irradiation which again
demonstrated that 53BP1 becomes localized to multiple
foci whereas the distribution of SRC3 in the nucleus
was homogenous (Figure 4B). Interestingly, some colo-
calization was evident at the 53BP1-containing foci
when the images are merged. However, we believe that
this is most likely not the result of an SRC3 response to
the DNA damage because we did not observe any redis-
tribution of SRC following treatment with etoposide.
Furthermore, immunoaffinity purification of SRC3 indi-
cated that 53BP1 copurifies with SRC3 regardless of
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whether the DNA had been damaged (data not shown).
We also examined a potential regulatory role of SRC3 in
the 53BP1-dependent response to etoposide following
SRC3 knockdown. SRC3 levels were downregulated
using siRNA and cells were treated with etoposide for
30 minutes then allowed to recover for various periods
of time and foci formation were again monitored. Foci
formation was clearly evident 30 minutes after etoposide
treatment and the number of foci decreased in a time-
dependent fashion (Figure 5A). Importantly, SRC3
knockdown using siRNA had no significant effect on the
rate of recovery following etoposide treatment (Figure
5B). These results suggest that SRC3 is most likely not
involved in the initial response to DNA damage.

The lack of effect of SRC3 in the DNA damage
response following etoposide treatment prompted us to
examine whether the association between SRC3 and
53BP1 may be important for gene regulation. Recent
studies have shown that a 53BP1-containing complex
binds to an imperfect palindromic sequence found in
the BRCA1 minimal promoter, and depletion of 53BP1
using siRNA suppresses both the activity of a reporter
containing the minimal promoter and BRCA1 expres-
sion [30,31]. To determine if 53BP1 and SRC3 bind to a
similar region of the BRCA1 promoter, we performed
ChIP analysis in HeLa cells (Figure 6A and 6B). Both
SRC3 and 53BP1 are enriched within the proximal pro-
moter that contains the 53BP1 binding site described
previously [30,31]. Finally, to assess if SRC3 or 53BP1
regulate BRCA1 protein expression, we used siRNA to
knockdown SRC3 or 53BP1 in Hela cells. As shown in
Figure 7, knockdown of 53BP1 or SRC3 resulted in sig-
nificant decreases in BRCA1 protein levels suggesting
that both proteins are required for expression of the
BRCA1 gene. Collectively, these results suggest that the
association between SRC3/53BP1 may represent a func-
tional complex involved in transcriptional regulation of
specific genes involved in DNA repair.

Discussion

In the present study we have identified the tumour sup-
pressor 53BP1 as a novel constituent of an SRC3 complex
that also includes the protein acetyltransferase CBP. Silver
staining of the affinity purified SRC3 complex detected at
least 10 additional proteins; although the reproducibility of
many of the purified proteins was not always consistent,
they did not coelute from control antibody affinity col-
umns. Therefore, we believe that they may play a compli-
mentary role to SRC3 in response to specific stimuli.
SRC3 belongs to the SRC family of proteins which func-
tion primarily as adaptor proteins involved in the recruit-
ment and stabilization of protein complexes to upstream
regulatory regions. Immunoaffinity chromatography has
previously been used to identify a number of SRC-
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Figure 3 SRC3 interacts with the carboxy terminus of 53BP1 in vitro. Various regions of 53BP1 were in vitro translated in the presence
of**S-methionine and incubated with recombinant full length SRC3. The resulting complexes were isolated using FLAG Sepharose and analyzed
by SDS-PAGE and fluorography. The input gel displays approximately 30% of the total amount of protein used for the interaction assay.

interacting proteins that include protein kinases, chroma-
tin modifying proteins such as CBP/p300 as well as addi-
tional adaptor proteins [32-34]. While 53BP1 has not been
previously identified as a SRC3-associated protein, many
of the previous studies have used immunoaffinity purifica-
tion using antibodies raised against different epitopes of
SRC3 [32,33]. Consequently, it is conceivable that a speci-
fic protein-antibody interaction could result in masking
specific interaction domains, or disrupt specific interac-
tions, resulting in the purification of a different repertoire
of interacting proteins.

Targeting protein acetyltransferases to specific sites in
the genome has been shown to play an important role

in double strand breaks (DSB) repair. The TRAP and
TIP60 histone acetyltransferases are recruited to DSB
and are required for H4 acetylation as well as the
recruitment of additional DSB mediators including
53BP1 [35]. More recently, both CBP and p300 have
been shown to play an important role in acetylation of
histone H3 and H4 at DSB sites during non homologous
end joining (NHE]) which in turn facilitates recruitment
of the SWI/SNF complex and consequently causing the
chromatin to assume a more relaxed conformation [36].
Interestingly, both CBP and p300 have been found to
associate with proteins involved in DNA repair and
DNA damage response pathways, including 53BP1,
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Figure 4 Localization of 53BP1 and SRC3 in response to DNA
damage. (A) Hela cells were treated with etoposide for 30 min
followed by fixation and immunoflourescence analysis using either
a53BP1 or aSRC3 primary antibodies. (B) Hela cells were treated
with 20 Gy y-irradiation and allowed to recover for 30 min prior to
staining with a.53BP1 polyclonal antibody directly labelled with
Alexafluor 594 or aSRC3 polyclonal antibody labelled with
Alexaflour 488. DAPI, DAPI fluorescence marking the cell nuclei.

suggesting that chromatin modification is a necessary
prerequisite for the maintenance of genome integrity
[33]. Finally, recent studies have implicated 53BP1 in
NHE] and V9(D)J recombination through a mechanism
involving changes in chromatin mobility [37].

Based on our fractionation studies using 53BP1 anti-
body, 53BP1 consistently cofractionated into 2 distinct
protein complexes following P11 chromatography. One
complex eluted at a lower salt concentration contained
both SRC3 and CBP, and a second complex which
eluted at a higher salt concentration and does not con-
tain SRC3 (data not shown). 53BP1 was first identified
in a screen for p53-interacting proteins and was initially
characterized as a coactivator of p53-dependent tran-
scription [38]. 53BP1 contains tandem C-terminal
BRCT motifs. Although the exact function of 53BP1
remains somewhat ambiguous it is believed to act as a
scaffold or adaptor protein that coordinates DNA repair
by facilitating recruitment of additional proteins
required in the DNA repair process [39]. Mice deficient
in 53BP1 exhibit a number of pleiotropic abnormalities
including growth and immune deficiencies, extreme
sensitivity to radiation and are cancer prone [40].
Importantly, cells from 53BP1-deficient mice exhibit
intrinsic defects in genomic stability indicating that
53BP1 is a tumour suppressor protein [40]. When cells
are exposed to genotoxic insults that cause DNA double
stranded breaks, 53BP1 becomes localized to discrete
nuclear foci which appear with varying degrees of
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rapidity and colocalize, in part, with other known com-
ponents of the DNA damage response pathway [41,42].
The region of 53BP1 required for focal recruitment has
been mapped to amino acids 1220-1711 and encom-
passes tandem tudor domains. The tudor domain has
been shown to interact with methylated lysines and
arginines and suggests that recruitment of 53BP1 to
chromatin during DSB may proceed through multiple
histone modifications [37]. For example the tudor
domain of 53BP1 has been shown to interact with
dimethylated H3K79 and H4K20 and studies have
demonstrated a prerequisite for H3K79 dimethylation in
the DNA damage response [43,44]. Interestingly, SRC3
is methylated by CARM1 in vivo and in vitro[14]. How-
ever, the region of 53BP1 that interacts with SRC3 con-
tains the BRCT domains, not the tudor domains so it is
unlikely that the association between 53BP1 and SRC3
is methylation dependent.

We did not find any evidence for a direct role for
SRC3 in the DNA damage response, based on immuno-
flourescence analysis. While 53BP1 clearly relocalized to
discrete foci in response to etoposide treatment, the dis-
tribution of SRC3 remained ubiquitous although some
colocalization was observed within the foci following
treatment with y irradiation. Furthermore, knockdown
of SRC3 using siRNA had no significant effect on the
recovery rate following short term treatment with etopo-
side. While we cannot fully exclude a role for SRC3,
based on this assay we believe that SRC3 is unlikely to
play a direct role in the initial response to DNA damage.
However, we have not examined other DSB mechanisms
such as NHE]J [45]. In addition, there may be a level of
redundancy with other SRC proteins which may com-
pensate for any effect SRC3 may have in DNA damage
response.

Our data suggests that 53BP1 plays a role in gene reg-
ulation and that the association between SRC3 and
53BP1 may be important for modulating the transcrip-
tional response of the BRCA1 gene. A recent study has
provided supporting evidence for this mechanism as
53BP1 may directly regulate gene transcription by tar-
geting the BRCA1 promoter [30]. In vitro gel shift ana-
lysis has demonstrated that a 53BP1-containing complex
binds to a consensus binding site found within the prox-
imal promoter region of BRCA1 and ChIP analysis has
shown that 53BP1 is targeted to the BRCA1 promoter
[30]. Furthermore, depletion of endogenous 53BP1 in
U20S cells is associated with decreased BRCA1 mRNA
and protein expression [30,37]. We have shown in Hela
cells that both 53BP1 and SRC3 are found within the
same approximate region of the BRCA1 promoter based
on ChIP analysis. Importantly, downregulation of SRC3
or 53BP1 resulted in a similar loss of BRCA1 expression
in HeLa cells.
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Figure 5 Time course of 53BP1 relocalization following SRC3 knockdown. (A) Hela cells were transfected with control siRNA, or siRNA
targeting SRC3. After 72 hr, the cells were stimulated with etoposide for 30 minutes, washed and then fixed and examined at various time
points for 53BP1-dependent foci formation. (B)Plot of the average number of foci/cell at a given time point following etopiside treatment.

The BRCA1 gene is a tumour suppressor that plays an  relatively rare in sporadic forms of breast cancer
essential role in multiple functions including DNA  although deregulation in BRCA1 expression is common
repair and transcriptional regulation and is regulated by  [48]. In the majority of these cases the BRCA1 promoter
a complex network of DNA binding proteins and coacti-  is not hypermethylated suggesting that altered transcrip-
vators [46,47]. Germline mutations in BRCA1 are tional regulation of the BRCA1 gene may play a causal
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Figure 6 ChIP analysis of of the BRCA1 promoter. Hela cells
were crosslinked with 1% formaldehyde. Chromatin was then
isolated and sonicated into approximately 1 kb fragments followed
by immunoprecipitation with either control antibody (IgG), a.53BP1
or aSRC3 antibody (IP) as indicated. The recovered DNA was then
assayed by (A) conventional PCR or by (B) realtime PCR using pairs
of oligonucleotides contained within the BRCAT upstream region.

role in this type of cancer. Upregulation of BRCA1
expression has also been shown to occur in response to
17B-estradiol in various breast cancer cell lines and in
overectimized mice [49,50], and BRCA1 levels increase
during puberty and pregnancy when estradiol levels
peak [51]. Furthermore, treatment of MCF7 breast can-
cer cells with 17B-estradiol results in recruitment of
ERa and p300 to the BRCA1 promoter that is, in part,
mediated by AP1 [49,50]. It is well established that
SRC3 interacts with both the ligand-bound ER and p300
with high affinity [1]. Thus, while we have not mapped
the BRCA1 binding sites in detail, it is conceivable that
in some cell types SRC3 and 53BP1 are recruited to the
BRCA1 promoter as part of a larger complex involving
the ER and as well as other transcription factors.
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Figure 7 SRC3 and 53BP1 are required for BRCA1 expression in
Hela cells. Hela cells were transfected with control siRNA, or siRNA
targeting either 53BP1 or SRC3. After 72 hr. the cells were harvested
and western blotting was performed on whole cell extracts using
specific antibodies indicated on the left.
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Although the biological significance of our findings
remains to be elucidated, BRCA1 expression is regulated
in a cell cycle dependent manner with the induction of
BRCA1 peaking before the onset of DNA replication
[52-54]. Consequently increases in BRCA1 expression
resulting from SRC3 overexpression in some breast can-
cers may lead to aberrant activation of S-phase check-
point proteins such as p53.

Conclusion

SRC3 and 53BP1 are part of a complex which targets
the BRCA1 gene promoter. Furthermore, both SRC3
and 53BP1 are required for BRCA1 expression suggest-
ing that the SRC3/53BP1 complex plays a role in DNA
damage by regulating the activity of a subset of target
genes involved in DNA repair.

Methods

Antibodies and Reagents

The antibody to SRC3 was generated from a His-tagged
recombinant protein and has been described previously
[1]. The antibody to 53BP1 was generated from a His-
tagged recombinant protein which was generated by
digesting a cDNA plasmid containing the human 53BP1
protein with Bam HI and MScI and the corresponding
fragment was subcloned into PQE31 vector (Qiagen).
The plasmid was then transformed into M15 bacterial
cells grown to an OD of approximately 0.7 and protein
production by adding 0.5 mM IPTG. The recombinant
protein was then purified using Ni-Agarose according to
the manufacturers instructions (Qiagen) and was subse-
quently injected into rabbits for antibody production.
The SRC3 and 53BP1 antibodies were purified by affi-
nity chromatography using Protein A Sepharose accord-
ing to standard procedures. All other antibodies were
from Santa Cruz Biotechnology. The siRNA used in this
study was obtained from Dharmacon. The siRNA
against 53BP1 was GCCAGGUUCUAGAGGAU-
GAdTdT. Knockdown of SRC3 was performed using the
SMART pool siRNA J-003759. The primers used for
PCR analysis of the BRCA1 promoter were as follows,
forward: GCCATTGATTGGTGGAGATT (-846),
reverse: CGAGTCTCGGGCAAGTAGTC (-662), and
the BRCA1 upstream primers were as follows, forward:
TGCAACACACCCAGAGTACC) (-7536) and reverse:
TTGCATTGTTCTGACCACCA (-7406).

Purification of SRC3 and 53BP1

For small scale scale purifications, HeLa cells were typi-
cally grown on 150 mm dishes to 80% confluency prior
to harvesting. For larger scale purifications, 20 litres of
cells were grown to mid-log phase prior to harvesting
and nuclear extracts were prepared according to stan-
dard methods [55]. The nuclear extract was dialyzed
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against buffer A [20 mM Tris (pH 7.9), 100 mM KClI,
0.5 mM EDTA, 0.5 mM EGTA, 10% glycerol, 0.5 mM
DTT, 0.2 mM PMSF and 5 pg/ml each of leupeptin,
aprotinin and pepstatin] and this fraction was loaded
onto a P11 phosphocellulose column preequilibrated in
the same buffer. The flowthrough was collected and the
column was washed sequentially with increasing KCl
concentrations. The relevant fractions were pooled, and
the proteins were precipitated with 20 to 60% ammo-
nium sulphate. The precipitated proteins were resus-
pended in a small volume of buffer A and then dialyzed
against the same buffer to remove residual ammonium
sulphate. This was then passed through a Sephacryl
S300 column and fractions corresponding to either the
SRC3 or 53BP1 containing peak were pooled, concen-
trated and dialyzed against buffer A containing 100 mM
KCl without DTT.

For affinity purifications, the SRC3 and 53BP1 anti-
body were crosslinked to Protein A sepharose using
dimethylpalmilidate (DMP) according to standard proce-
dures [56]. Fractions from the gel filtration step were
loaded onto the affinity column at a flow rate of 0.2-0.5
ml/min and the flowthrough was collected and reloaded
on the the column five times prior to elution of the
bound proteins with 100 mM glycine (pH 2.8). For
mock purification experiments, samples from the gel fil-
tration step were loaded onto protein A sepharose
alone, or protein A sepharose crosslinked to an irrele-
vent antibody.

Subcellular fractions of cells were prepared according
to standard methods [55].Western blotting was per-
formed as described previously [1]. Normally 20 pg of
protein was loaded and analyzed by standard SDS-
PAGE, transferred to nitrocellulose and detected by ECL
according to the manufacturers recommendations
(Amersham).

Mass Spectrometry

Purified complexes were separated by 7% SDS-PAGE
and then stained with colloidal blue for 1 h followed by
destaining in 25% MeOH for an additional 2 h. The
p300 band was excised and cut into 1 mm pieces. The
gel pieces were washed twice in a 50% CH3CN solution
for 5 min followed by two washes with a 250-ml solu-
tion consisting of 50% CH3;CN, 50 mM NH,HCO3; for
30 min. The gel pieces were lyophilized, rehydrated in
10 mM NH4HCO;3, pH 8.5 containing 0.1 mg/ml trypsin
(Roche Molecular Biochemicals) and incubated over-
night at 37°C. The tryptic fragments were extracted by
two 30 minute washes with a solution containing 60%
CH3CN and 10% trifluoroacetic acid. The combined
solutions were lyophilized using a Speedvac, resus-
pended in 20 ml of 0.5% trifluoroacetic acid solution
and the peptide suspensions were purified using a
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ZipTip (Millipore) cartridge. Samples were then ana-
lyzed by LC-MS at the Centre d’innovation Génome
Québec (McGill University)

Expression and Purification of Recombinant Proteins
FLAG-tagged SRC3 was generated by subcloning SRC3
c¢DNA into the pFastbac vector (InVitrogen) and recom-
binant proteins were expressed using the Bac-to-Bac
baculovirus expression system according to the manu-
facturers instructions. Epitope-tagged proteins were pre-
pared by infection of SF9 cells with the appropriate
recombinant baculovirus followed by immunoaffinity
chromatography with anti-Flag M2 affinity resin essen-
tially as described [14]. Proteins were eluted with 20
mM Tris buffer pH 7.9, 100 mM KCl, 10% glycerol, 0.5
mM EDTA and 0.2 mg/ml of the appropriate peptide
competitor. Proteins were then frozen and stored at -80°
C.

In vitro interaction assays

Various regions of 53BP1 cDNA were PCR amplified
and subcloned into the Pcite vector (Novagen). Approxi-
mately 2.5 pg of plasmid was used for each in vitro tran-
scription/translation reaction in the presence of 2 pl**S-
Met according to the manufacturers instructions (Pro-
mega). The reaction was allowed to proceed for approxi-
mately 75 minutes. 1 pg of epitope-tagged full length
SRC3 was incubated with each in vitro translated reac-
tion (100,000 cpm) at 4°C for 2 hr in 250 pl of PI buffer
consisting of 20 mM Tris (pH 7.9), 300 mM KCl, 0.5
mM EDTA, 1 mM MgCl,, 1 mM DTT, 10% glycerol,
0.1 mM PMSF and 1 mg/ml BSA. Each reaction was
then incubated with 25 ul FLAG-Sepharose for 30 min-
utes at 4°C then washed 5x with PI buffer. After the
final wash, the beads were resuspended in 30 ul 2x SDS
sample buffer and analyzed by SDS-PAGE. The gel was
then fixed, incubated with Amplify (Amersham) for 30
minutes dried and exposed to film at -80°C for approxi-
mately 96 hr.

Immunostaining and microscopy

Hela cells were grown on cover slips in 6 well plates and
treated with DMSO or etoposide for the indicated times
and were then fixed for 15 min with 4% formaldehyde
in PBS followed by a 10-min incubation with 0.1 M gly-
cine in PBS. Cells were then permeabilized with 0.5%
Triton X-100 in PBS for 10 minutes. Immunostaining
was performed with SRC3 antibody (1:400 dilution) or
53BP1 antibody (1:400 dilution) and fluorophore-conju-
gated Donkey secondary antibodies (CY3, FITC) (Jack-
son ImmunoResearch Laboratories). For the
experiments examining the effects of y-irradiation, affi-
nity purified SRC3 and 53BP1 antibodies were directly
labeled with Alexaflour 594 and 488, respectively
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according to the manufacturers instructions (Invitrogen).
Immunflourescence was then performed with the conju-
gated primary antibodies. Epifluorescence imaging was
performed on an Axiovert 200 M inverted microscope
equipped with an Apotome (Carl Zeiss) using appropri-
ate fluorophore-specific filter sets. Z-series images (63 x
magnification) were acquired at 0.5-pm intervals and
processed with Axiovision software and Adobe Photo-
shop. Fluorescence intensity plots were obtained by per-
forming a line scan bisecting the cell using Axiovision
software.

Chromatin immunoprecipitation assay

HeLa cells were cross-linked with 1% formaldehyde at
room temperature for 10 min. Cells were washed twice
with ice-cold PBS containing 0.5 mM EDTA and har-
vested. Cells pellets were lysed in 0.3 ml of cell lysis
buffer (50 mM Tris-HCl [pH 8.1], 10 mM EDTA, 1%
SDS, and protease inhibitors) and incubated on ice for
10 min. Cell lysates were sonicated to yield DNA frag-
ments ranging in size from 750- to 1,000 base pairs.
Approximately 450 pg of the cross-linked, sheared
chromatin solution was used for immunoprecipitation
with. A small portion of each sample was saved as
input DNA (5%). Supernatants were diluted 10-fold in
dilution buffer (20 mM Tris-HCI [pH 8.1], 1% Triton
X-100, 2 mM EDTA, 150 mM NacCl, and protease
inhibitors) and precleared with 60 ul of 50% slurry
protein A-Sepharose containing 2.5 ug of sheared sal-
mon sperm DNA for 2 h at 4°C. Immunoprecipitation
was performed overnight at 4°C with 1.5-4 pg of the
antibodies. 60 pl of protein A-Sepharose containing 2.5
pg of salmon sperm DNA per ml was added to the
solution and incubated for 1 h at 4°C. The beads were
washed one time with wash buffer I (0.1% SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCI, 150
mM NaCl), wash buffer II (0.1% SDS, 1% Triton X-
100, 2 mM EDTA, 20 mM Tris-HCI, 500 mM NacCl),
wash buffer III (0.25 M LiCl, 1% NP-40, 1% Na-Deoxy-
cholate, 1 mM EDTA and 10 mM TrisHCI). Immuno-
complexes were extracted twice with 200 pul elution
buffer (1% SDS and 0.1 M NaHCO3). NaCl was added
to a final concentration of 200 mM and the cross-link-
ing was reversed by heating at 65°C overnight. The
DNA was purified using Qiagen PCR purification spin
columns. For analysis by conventional PCR, conditions
were as follows: initial denaturing cycle of at 94°C for
3 min, followed by 35 cycles of 94°C for 30 sec, 52°C
for 30 sec and 72°C for 1 min, and a final elongation
step of 72°C for 10 min.

For some experiments, DNA isolated from ChIP
experiments was subjected to quantitation by real time
PCR using Brilliant SYBR green master mix (Stratagene;
600548). Primers were identified using the Primer
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Express program (Stratagene) and tested to establish
optimum reaction conditions. Reactions were performed
in a 25 pl volume according to manufacturer’s recom-
mendations. The reaction was carried out and measured
using Mx3000P realtime instrument. The nonimmune
IgG copy number was subtracted from IP DNA copy
number. The resulting IP copy number was normalized
against the total input DNA by dividing the IP by input
and expressing the IP as a percentage of the input
DNA. All measurements were done in duplicates and an
average Ct value was used to calculate copy number.
Two independent realtime reactions were done for each
experiment.
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