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Volatile profiling reveals intracellular metabolic
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Abstract

Background: Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin,
the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly
characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes.
To control or customize biosynthesis of natural products we must understand how secondary metabolism
integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile
compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism
with other metabolic and cellular processes.

Results: Volatile compounds were examined using solid phase microextraction - gas chromatography/mass
spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds
derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols,
esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on
media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the
global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and
development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the
transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that
volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the
effects of VeA on asexual conidiation and sclerotia formation.

Conclusions: 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in
intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites
with catabolism of branched chain amino acids, alcohol biosynthesis, and b-oxidation of fatty acids. 3) Intracellular
chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow
through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling
and customizing production of natural products.
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Background
Secondary metabolites are low-molecular-weight natural
products generated by filamentous fungi, plants, algae,
bacteria, and animals in response to environmental abio-
tic and biotic stimuli. Secondary metabolites have a
strong impact on humankind via their application in
health, medicine, agriculture, and industry; they include
useful (e.g. antibiotics) and detrimental compounds (e.g.
mycotoxins).
Filamentous fungi produce a broad range of secondary

metabolites. Each fungal species can synthesize multiple
secondary metabolites, and these metabolites vary from
species to species as well thus enabling the use of sec-
ondary metabolite profiling in the chemotaxonomy of
filamentous fungi [1-3]. The complex network of sec-
ondary metabolism is connected to basic (primary)
metabolism. Secondary metabolites are derived from
compounds formed during primary metabolism, e.g.
amino acids, nucleotides, carbohydrates, acyl-CoA
(reviewed in [4]). Each secondary metabolic pathway
accomplishes its specific function (although often
unknown) as part of cellular metabolism and appears to
provide “active safety” mechanisms for the producer
enhancing survival in the continuously changing envir-
onment [5-10].
Aspergillus spp. produce an array of secondary meta-

bolites including aflatoxin, cyclopiazonic acid, aflatrem,
patulin, penicillin, kojic acid, lovastatin, carotenoids, and
spore pigments; novel secondary metabolites have also
been discovered that are synthesized from so called
silent gene clusters in A. nidulans, such as terrequinone
A, monodictyphenone, emodins, and polyketides [11].
Fungal-bacterial physical interactions have been shown
to induce silent secondary metabolic gene cluster
expression in A. nidulans required for biosynthesis of
the polyketide orsellinic acid [5,9].
Aflatoxin biosynthesis is one of the most highly char-

acterized secondary metabolic pathways [12-15]. In con-
trast, pathways for the synthesis of many other
secondary metabolites, e.g. patulin, cyclopiazonic acid,
aflatrem, and kojic acid, are poorly understood [16-18].
Molecular regulation of aflatoxin biosynthesis is com-
plex and involves control of gene expression at the level
of the individual gene and at the level of the entire gene
cluster [14,15,19]. Biosynthesis of aflatoxin initiates dur-
ing a transition from exponential growth to stationary
phase, and closely correlates with fungal development
(conidiospore, cleistothecia, and sclerotia formation)
[20-22]. AflR, a positive aflatoxin pathway regulator, is a
transcription factor that controls at least in part expres-
sion of several genes in the aflatoxin gene cluster [23].
VeA, a global regulator of secondary metabolism, links
response to light with secondary metabolism and fungal

development; this response is mediated through forma-
tion of a protein complex VelB/VeA/LaeA [24]. LaeA is
a nuclear methyl transferase that through protein-pro-
tein interactions mediates regulation of secondary meta-
bolism and development [21]. Aflatoxin biosynthesis is
precisely orchestrated within the cell; the early reactions
are reported to occur in peroxisomes [25]; recent evi-
dence from our laboratory suggests that specific early
steps as well the middle and late steps are carried out in
specialized trafficking vesicles, called aflatoxisomes,
which are also involved in export of the toxin outside
the cell [12]. A novel role for VeA in coordination of
aflatoxisome development with aflatoxin biosynthesis
was recently discovered [4,12]. Biosynthesis of aflatoxins
appears to fulfill multiple biochemical and biological
functions including removal of acetate, protection of the
genome from UV damage [26], quenching oxidative
stress [27-29], protection from insects [30,31], and regu-
lation of conidiation, and sclerotia development
[22,32-34].
In order to manipulate efficiently secondary metabo-

lism (to enhance production of beneficial metabolites
and to control production of detrimental ones) we must
understand the “molecular switch” mechanism that con-
trols the initiation of secondary metabolism. Reaching
this understanding requires a cooperative effort from
genomic, proteomic, and metabolomic research. Despite
advances in knowledge about the genes involved in bio-
synthesis and the regulation of many secondary metabo-
litic pathways, a detailed understanding of how
secondary metabolism integrates with other metabolic
and cellular processes is still not available [12,25,35-39].
Metabolomics is a powerful tool to characterize the

metabolic state of the cell and to discover new metabo-
lites and biochemical pathways [40]. Volatiles, one
important group of cellular metabolites, represent a sig-
nificant portion of the metabolome. Many organic com-
pounds are present in the volatile phase including acids,
alcohols, aldehydes, esters, short chain fatty acids, lipid
oxides, terpenes, and phenolics. In this study we applied
volatile profiling analysis for gaining rapid access to
information on intracellular metabolism in the fungus.
Specifically, we examined carbon flow in the presence or
absence of secondary metabolism in A. parasiticus using
wild type and mutant strains carrying genetic defects
specifically in aflatoxin biosynthesis and in VeA, a global
regulator of secondary metabolism. The volatile metabo-
lites generated by the fungus were analyzed using solid
phase microextraction - gas chromatography/mass spec-
trometry (SPME-GC/MS). This analytical approach is a
non-invasive and solvent-free absorption technique that
is used in analysis of volatile compounds from the head-
space above the sample [41]; the technique has been

Roze et al. BMC Biochemistry 2010, 11:33
http://www.biomedcentral.com/1471-2091/11/33

Page 2 of 15



widely employed in volatile analysis (profiling) of plants,
yeast, and bacteria because it is accurate, sensitive, and
robust [41-48]. To conduct this procedure, the outer
polymer coating of a fused silica fiber absorbs volatiles
from the headspace in the growth environment; the
volatiles are then desorbed in the hot GC inlet and
chromotographed in the usual manner. The separated
compounds are subsequently identified by mass
spectrometry.
Using SPME-GC/MS volatile profiling analysis we

demonstrated that a genetic block in aflatoxin biosynth-
esis or disruption of the global regulator veA re-directs
intracellular carbon flow. Specifically, we observed that
VeA negatively regulates catabolism of branched chain
amino acids and the synthesis of ethanol in A. parasiti-
cus; these metabolic changes were mediated at least in
part at the transcriptional level. We also showed that
volatile metabolites generated under the control of VeA
may participate in the molecular machinery that regu-
lates conidiation and sclerotia formation.

Results
Profiling of volatile compounds in A. parasiticus SU-1
We withdrew samples from cultures at regular intervals
during growth and analyzed volatiles following a 1 to 2 h
equilibration period; this sampling method resulted in
stable and reproducible measurements. We also analyzed
volatile compounds in a control injection that originated
from the SPME fiber, the glass vial, and the screw cap
and valve; these volatiles were excluded from the analysis
of volatiles detected in the fungal culture headspace. The
relative amounts of volatiles produced in culture were
assessed based on instrument response [42]; these com-
pounds were designated as possible, or putative, fungal
metabolites since they could be identified by comparison
with a mass spectrum library. Since the A. parasiticus
strains used in the study (Table 1) did not differ signifi-
cantly in growth rate in liquid YES medium (Additional
File 1, Figure S1), the relative intensity change of all
masses detected was also related to the levels of the com-
pounds produced in culture. Compounds with no match
in the NIST mass spectrum library were defined as

unknown. Ethanol levels produced by the fungus in cul-
ture were compared to standards. Thus, all volatiles
detected fell into one of three categories: 1) known com-
pounds identified with standards (ethanol); 2) putative
compounds identified by a match in NIST mass spec-
trum library; and 3) unknown compounds.
The volatile profile of SU-1 grown for 72 h in liquid

YES (aflatoxin inducing conditions) in the dark revealed
24 putative fungal metabolites and 25 unknown com-
pounds (Additional File 2, Figure S2). These volatiles
could be divided into several classes of chemical

Table 1 Strains used in the study

Strain Genotype Source

A. parasiticus SU-1 (ATCC
56775)

wild type ATCC

A. parasiticus ATCC 36537 ver-1 wh ATCC

A. parasiticus ΔveA
(TJW35.21)

ver-1 wh pyrG- ΔveA::
pyrG

Calvo et al., 2004
[31]

A. parasiticus AFS10 (ATCC
24690)

aflR Cary et al., 2002
[32]

A. parasiticus B62 niaD nor-1 br-1 ATCC

A. nidulans FGSC4 wild type FGSC

Figure 1 Branched chain amino acid-derived volatiles
generated by A. parasiticus strains grown in YES for 72 h in
the dark. Conidiospores were inoculated into 100 ml of liquid YES
medium at 104/ml and the cultures were grown at 30°C, with
shaking at150 rpm, in the dark for 72 h. Volatiles were analyzed as
described in Methods. *, statistically significant difference as
compared with SU-1, P < 0.01.
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compounds. The largest class of putative fungal metabo-
lites included compounds derived from intermediates in
metabolism of branched chain amino acids (leucine, iso-
leucine, and valine; see Additional File 3, Figure S3) and
esters. Additional classes of compounds included alco-
hols (1-butanol, 1-propanol, and ethanol), lipid-derived
volatiles (2-methylfuran and 1,1-diethoxy-ethane), alde-
hydes (formaldehyde), and organic acids (acetic acid).

The relative quantities of volatiles derived from metabo-
lism of branched chain amino acids in the dark and
light were similar (Figure 1, 2). However, we observed
differences in number of leucine- and valine-derived
volatiles (but not isoleucine-derived volatiles) that were
produced in the light versus dark. The number and rela-
tive quantities of branched chain amino acid-derived
volatiles detected in the light in YES were higher at 72 h
as compared with 48 h (Additional File 4, Figure S4).
We compared volatiles generated by A. parasiticus SU-1
grown for 72 h in the light in GMS (chemically defined
medium, contains glucose) to those generated in YES.
In GMS, the fungus produced a lower number of com-
pounds of all classes of volatiles identified (including
volatiles derived from branched chain amino acids and
lipids) than in YES (not shown).

A genetic block in aflatoxin biosynthesis affects the
volatile profile
We compared volatiles produced by A. parasiticus SU-1
(wild type) and A. parasiticus strains impaired in afla-
toxin biosynthesis, AFS10 and 36537, grown in a rich
medium (YES) for 72 h in the dark. Aflatoxin synthesis
is blocked in AFS10 (gene disruption in a positive path-
way regulator, aflR; no aflatoxin enzymes or aflatoxin
are synthesized) and in A. parasiticus ATCC36537 that
carries a mutation in the aflatoxin pathway gene, ver-1
(accumulates the pathway intermediate versicolorin A).
In the dark, AFS10 and 36537 generated similar relative
quantities of 3-methylbutanal, a presumable intermedi-
ate in leucine metabolism, as compared to the wild type
strain SU-1 (Figure 1a). However, no 3-methylbutanoic
acid ethyl ester was produced by these two mutants
(Figure 1a). None of the strains studied produced
3-methylbutanol as well.
All studied strains generated 2-methylbutanol, a puta-

tive derivative of isoleucine catabolism (Figure 1b).
Nonetheless, the ethyl and methyl esters of the corre-
sponding 2-methylbutanoic acid (2-methylbutanoic acid
ethyl ester and 2-methylbutanoic acid methyl ester)
were produced by the mutants in less quantity as com-
pared with SU-1.
Accumulation of 2-methylpropanoic acid ethyl ester, a

derivative of valine metabolism, was significantly
reduced in AFS10 and 36537 as compared to the wild
type SU-1 (Figure 1c). All strains, SU-1, AFS10, and
36537, generated 2-methylpropanol.

Disruption of veA enhances accumulation of metabolites
in branched chain amino acid catabolism
The volatile profile produced by ΔveA was significantly
different than the profile of SU-1 (the wild type) and
ATCC 36537 (genetic control for ΔveA). A. parasiticus
ΔveA generated significantly higher quantities of

Figure 2 Branched chain amino acid-derived volatiles
generated by A. parasiticus strains grown in YES for 72 h in
the light. Conidiospores were inoculated into 100 ml of liquid YES
medium at 104/ml and the cultures were grown at 30°C, with
shaking at 150 rpm, in the light for 72 h. Volatiles were analyzed as
described in Methods. *, statistically significant difference as
compared with SU-1, P < 0.01.
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metabolites (relative to SU-1 and 36537) derived from
catabolism of the branched chain amino acids leucine, iso-
leucine, and valine in the dark and in the light (Figure 1,
2). For instance, quantities of the branched chain alcohols
2-methylbutanol, and 2-methylpropanol were doubled in
ΔveA. Ethyl and methyl esters derived from branched
chain amino acids (derived presumably from leucine, iso-
leucine, and valine) increased up to 10 fold (and higher for
several compounds) as compared with SU-1 and 36537.
Four esters were unique to ΔveA (Additional File 5, Figure
S5). One of these, 2-methylbutanoic acid methyl ester is
found in the aroma of gooseberry [49], which may explain
the observed fruity smell of ΔveA cultures.
Interestingly, more than 2 fold higher quantities of ethyl

acetate and acetic acid were also detected in ΔveA (Addi-
tional File 2, Figure S2) in comparison to 36537 and SU-1.

Feeding A. parasiticus ΔveA with leucine, isoleucine, and
valine
We determined that YES medium contains low levels
of 2-methylbutanal, 3-methylbutanal, and 2-methylpro-
panal (not shown), which serve as precursors to synth-
esis of the corresponding branched chain alcohols. To
examine whether the branched chain alcohols and
esters generated in elevated quantities by A. parasiticus
ΔveA relate to catabolism of the branched chain amino
acids leucine, isoleucine and valine by the fungus,
these amino acids were added to 48 h old cultures of
A. parasiticus ΔveA at a final concentration of 0.03 M
and the volatiles were analyzed after 18 h. Methionine
(0.03 M final concentration) was added to a separate
flask as a control. Feeding with leucine increased for-
mation of the esters corresponding to leucine catabo-
lism; however, formation of 3-methylbutanol, an
expected product of leucine catabolism, was not
detected either with or without addition of leucine
(Figure 1a, Figure 3a). Added isoleucine and valine sig-
nificantly (several fold) increased production of the
expected corresponding esters and alcohols (2-methyl-
butanol, and 2-methylpropanol) (Figure 3b, c). Feeding
with amino acids also elevated production of certain
non-corresponding volatiles. For example, addition of
valine increased accumulation of 3-methylbutanoic
acid ethyl ester, a product of leucine catabolism. Addi-
tion of isoleucine and methionine increased formation
of the products of valine catabolism including
2-methylpropanoic acid ethyl ester.

Disruption of veA increases ethanol production by
A. parasiticus ΔveA
It was shown previously that aspergilli can produce
ethanol [50]. In that study, an inverse regulatory rela-
tionship between aflatoxin and ethanol accumulation
was demonstrated. Aflastatin A, an inhibitor of aflatoxin

production, was shown to inhibit aflatoxin biosynthesis
and concurrently to inhibit ethanol catabolism at the
transcriptional level thus resulting in an increase of
ethanol accumulation by A. parasiticus; glucose con-
sumption also increased [50,51].
We demonstrated that in YES, A. parasiticus strains

including SU-1, B62 (nor-1 mutant, accumulates the

Figure 3 Effect of amino acid feeding on volatile production
by A. parasiticus ΔveA grown in the dark. Conidiospores were
inoculated into 100 ml of liquid YES medium at 104/ml and the
cultures were grown at 30°C, with shaking at 150 rpm, in the dark
for 48 h. Then the amino acids were added and volatiles were
analyzed after 18 h of additional incubation as described in
Methods.
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pathway intermediate norsolorinic acid), AFS10, and
ΔveA produced significantly higher quantities of ethanol
than A. nidulans FGSC4 at each time point tested (the
experiment was performed in the dark for 4 days) (Fig-
ure 4a). In the chemically defined medium GMS, all
A. parasiticus strains tested (SU-1, AFS10, 36537, and
ΔveA) generated several fold lower quantities of ethanol
as compared with YES medium (Figure 4b). Light did
not influence ethanol production by either strain of
A. parasiticus (Figure 4c). Feeding with leucine (as

described above) did not significantly affect production
of ethanol by the wild type SU-1 (not shown).
A genetic block in aflatoxin biosynthesis in AFS10 or

in 36537 resulted in a decreased formation of ethanol by
these mutant strains in comparison to SU-1. However,
disruption of veA resulted in 3 to 4 fold higher levels of
ethanol as compared to SU-1, or 36537 (Figure 4a, b, c)
under all conditions tested; the concentration of ethanol
in the ΔveA culture medium ranged from 2 to 8%. Feed-
ing with leucine and valine (as described above) did not
significantly affect production of ethanol by ΔveA (not
shown). However, isoleucine feeding resulted in a slight
inhibition of ethanol production (not shown).

Volatiles produced by A. parasiticus ΔveA affect
conidiospore and sclerotia formation
Disruption of veA results in developmental defects
(blocks asexual conidiation in the dark and sclerotia for-
mation [32,52]). We previously showed that fungal vola-
tiles play a role in the control of secondary metabolism
[53]. To test whether the volatiles produced by ΔveA
participate in the molecular machinery that regulates
aflatoxin biosynthesis and asexual conidiation, we grew
A. parasiticus B62 (accumulates the red colored afla-
toxin intermediate norsolorinic acid along the colony
margin) on agar medium in the presence of volatiles
generated by ΔveA. We observed an approximately 35%
to 55% reduction in conidiation in B62 after exposure to
ΔveA volatiles for 5 days (Figure 5). Accumulation of
norsolorinic acid was not affected (not shown).
To analyze the effect of ΔveA volatiles on sclerotia

formation, A. parasiticus SU-1 and ATCC 36537 were
grown on coconut or YGT agar media (both media
were previously shown to induce sclerotia formation
[22,32]) in the dark in the presence of ΔveA volatiles
(see Methods). A. parasiticus SU-1 grown on coconut
agar medium for 9 days demonstrated an approximately
30 to 40% decrease in the number of sclerotia in the
presence of ΔveA volatiles (Table 2). However, no signif-
icant effect on the number of sclerotia formed on YGT
was observed (not shown). Under all conditions tested,
sclerotia were black in color and were able to produce
colonies after harvest followed by inoculation onto YES
agar medium. Interestingly, SU-1 conidiospores that
developed on coconut medium in the presence of ΔveA
volatiles for 17 days were dark brown, whereas conidio-
spores developed under SU-1 volatiles were dark green
indicating that volatiles also may affect biosynthesis of
conidial pigment.

Analysis of transcript accumulation for branched chain
amino acid aminotransferase and alcohol dehydrogenase
The first reaction in the catabolism of branched chain
amino acids is catalyzed by a branched chain amino

Figure 4 Ethanol production by aspergilla. Ethanol levels were
measured using GC as described in Methods. A. Aspergilli were
grown in YES liquid medium in the dark for 4 days. B. A. parasiticus
strains were grown in YES or GMS liquid media in the light for 72 h.
C. Aspergilli were grown inYES liquid media in the light and in the
dark for 72 h. *, statistically significant difference as compared with
SU-1, P < 0.01.

Roze et al. BMC Biochemistry 2010, 11:33
http://www.biomedcentral.com/1471-2091/11/33

Page 6 of 15



acid aminotransferase that forms a 2-ketoacid; this reac-
tion controls the flow of carbon through the catabolic
pathway [54]. The resulting 2-ketoacid can then be
transformed into a branched chain alcohol (after decar-
boxylation in the presence of 2-keto acid decarboxylase),
and/or into ethyl or methyl esters (see schematic in
Additional File 3, Figure S3). In order to examine possi-
ble mechanisms that generate the observed elevation in
the accumulation of catabolic products of branched
chain amino acids, the expression of branched chain
amino acid aminotransferase gene expression was ana-
lyzed. The genome of A. flavus, a close relative of A.
parasiticus [12,14], contains two genes (AFLA_113800
and AFLA_044190) that encode proteins that exhibit a
high percentage identity with the Saccharomyces cereve-
siae branched chain amino acid aminotransferases BAT1
(mitochondrial) and BAT2 (cytosolic). AFLA_113800
exhibits 61% identity to S. cerevisiae branched chain
amino acid aminotransferase BAT1 and 60% identity to
BAT2 (Additional File 6, Figure S6). AFLA_044190 is
43% identical to BAT1 and 44% identical to BAT2. The
expression of AFLA_113800 and AFLA_044190 was
detected in SU-1 and 36537 (Figure 6). Interestingly, in

ΔveA the expression levels for these genes were approxi-
mately 2 fold higher at 40 h as compared with SU-1 and
36537 (Figure 6); at this time point, aflatoxin biosynth-
esis peaks in SU-1. However, there were no significant
differences in the relative concentrations of branched
amino acids in SU-1, ΔveA, 36537, and AFS10 cultures
grown for 72 h in YES (not shown).
Since we observed a significant increase in the level of
ethanol accumulation in ΔveA, we analyzed the expres-
sion of a gene encoding alcohol dehydrogenase,
AFLA_048690. This gene exhibits the highest sequence
identity (57%) with S. cerevesiae adh1, a gene that
encodes an alcohol dehydrogenase (Additional File 7,
Figure S7). adh1 accounts for the majority of alcohol
dehydrogenase activity in baker’s yeast and primarily is
responsible for ethanol formation [55]. AFLA_048690
also exhibits 50 to 55% identity to the yeast genes adh
2, 3, and 5. The yeast genes adh1, 2, 3, and 5 are also
known to participate in the catabolism of amino acids
to produce branched chain alcohols [56]. In ΔveA the
expression level for AFLA_048690 was significantly
higher at 40 h as compared with SU-1 and 36537
(Figure 6); the same pattern of expression was observed

Figure 5 Effect of fungal volatiles on A. parasiticus B62 sporulation. Spores were center inoculated on agar media and grown for 5 days at
30°C in the dark. B62 was grown on GMS while SU-1 and ΔveA were grown on YES agar medium. Small Petri dishes containing colonies (no
lids) were arranged within large Petri dishes as shown above. B62 conidia are represented by dark brown dots in the center of colonies.

Table 2 Volatiles generated by A. parasiticus ΔveA reduce sclerotia production by SU-1 grown on coconut agar
medium

Sclerotia developed by SU-1 on coconut agar medium; lid # Volatiles were produced by aspergilli grown on YES or coconut agar
medium, or YES agar medium only (two lids of each)

ΔveA on YES SU-1 on coconut SU-1 on YES YES
only

1 231 397 252 493

2 231 364 314 258

3 232 618 n\e 307

Three 60 × 15 mm Petri dish lids were placed inside a large 150 × 15 mm Petri dish as described in Methods. For sclerotia development 104spores of A.
parasiticus SU-1 were center inoculated onto one lid that contained coconut agar medium. For volatiles generation, two other lids contained either ΔveA
inoculated on YES agar medium, or SU-1 inoculated on coconut agar medium (control), or SU-1 inoculated on YES agar medium (control), or YES agar medium
only (control). The cultures were grown in the dark at 30°C for 9 days. The experiment was performed in triplicate. The number of sclerotia developed by SU-1
grown on coconut agar medium per plate is presented. n\e, not estimated.
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for the putative branched chain amino acid transferases
AFLA_044190 and AFLA_113800 (see above, Figure 6).
These results strongly suggest that VeA negatively regu-
lates the formation of branched chain amino acid-
derived volatiles and ethanol as the cells trigger second-
ary metabolism.

VeA is a positive regulator of mitochondrial and
peroxisomal b-oxidation
b-oxidation of fatty acids is one source that supplies
precursors for polyketide biosynthesis; in addition, b-
oxidation of odd number fatty acids generates propio-
nyl-CoA that can affect the activity of a polyketide
synthase involved in sterigmatocystin biosynthesis

[57,58], thus presumably contributing to the ΔveA phe-
notype. Propionate is also a product of catabolism of
several amino acids, including valine and isoleucine. The
inability of null mutants ΔveA and ΔlaeA to grow on
peanut and maize seeds [59] may be explained by the
failure of the mutants to metabolize host lipids due to
defects in b-oxidation.
We focused our attention on the genes echA and foxA,

which encode, respectively, a short chain enoyl-CoA
hydratase (EchA) involved in b-oxidation in mitochon-
dria, and a multifunctional enzyme FoxA (possesses
enoyl-CoA hydratase and hydroacyl-CoA dehydrogenase
activities) involved in b-oxidation of long chain fatty
acids in peroxisomes; these genes previously were

Figure 6 Relative expression of AFLA_044190, AFLA_113800 and AFLA_048690 in SU-1, ATCC36537 and ΔveA. For growth conditions
and RT-PCR methods, see Methods. Intensities of the PCR bands obtained for each time point (24 h, 40 h and 72 h) for a particular gene were
compared. Relative intensity (R.I) for a band (or relative expression, R.E.) is reported as the ratio of the absolute intensity of the band to the
highest absolute intensity recorded for any time-point. Absolute intensity values were measured with Adobe Photoshop software. The number in
parenthesis indicates the expected size of PCR product obtained using genomic DNA.
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shown to be involved in b-oxidation in A. nidulans
[25,38]. A BLAST search using sequences of A. nidulans
foxA and echA identified two homologous genes in the
genome of A. flavus, a close relative of A. parasiticus
[12,14]. AFLA_041590 has 81% identity to A. nidulans
foxA; AFLA_043610 has 83% identity to A. nidulans
echA. To analyze transcript accumulation in

A. parasiticus, primers were designed based on the
A. flavus gene sequences (Figure 7).
Expression of both genes in the wild type SU-1and in

ΔveA increased from 24 h to 40 h of growth (Figure 7).
By 72 h of growth we observed a decline in echA tran-
script accumulation in SU-1 and ΔveA; however the
decrease in ΔveA was more severe than in SU-1.

Figure 7 Transcript analysis of genes involved in the methylcitrate cycle and b-oxidation of fatty acids in A. parasiticus strains. For
growth conditions and RT-PCR methods, see Methods. R.E., relative expression was calculated as shown in Figure 6. CS, citrate synthase
AFLA_007020; 2-MCS, 2-methylcitrate synthase AFLA_049290; 2-MCD, 2-methylcitrate dehydratase AFLA_056350; echA, a short chain enoyl-CoA
hydratase AFLA_043610; foxA, an enoyl-CoA hydratase/hydroacyl-CoA dehydrogenase AFLA_041590. The number in parenthesis indicates the
expected size of PCR product obtained using genomic DNA.
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By 72 h of growth, transcript accumulation of foxA in
SU-1 continued to increase, whereas in ΔveA accumula-
tion of the foxA transcript declined slightly.
The methylcitrate cycle is one biochemical pathway

for propionate metabolism in fungi [60-63]. We
hypothesized that impairment of methylcitrate cycle
would increase formation of corresponding valine- and
leucine-derived esters. We examined transcript accumu-
lation of the first two genes of the methylcitrate cycle,
2-methylcitrate synthase (2-MCS) and 2-methylcitrate
dehydratase (2-MCD), in A. parasiticus strains (Figure
7); we also compared their pattern of accumulation with
transcript accumulation of citrate synthase. We detected
transcripts for all three genes in all strains tested. How-
ever, in ΔveA, transcripts for 2-MCS and 2-MCD
increased at 30 h and declined by 40 h, in contrast to
the wild type SU-1, which showed a slight decrease in
transcript accumulation for 2-MCS from 24 h to 40 h.
These data suggest that the 2-methylcitrate cycle is not
impaired in ΔveA.

Discussion
A metabolomics approach previously was used to link
complex biochemical and cellular functions to genomics
in plants and yeast [45,64-66]. However, relatively few
(and incomplete) metabolomics studies have been
reported for filamentous fungi [3,67-70]. Volatile com-
pounds represent a significant portion of the metabo-
lome and, as has been demonstrated in our study, they
provide information on the real-time metabolic changes
that occur within the fungal cell; most importantly from
a practical stand point, this approach does not require
quantification of the metabolites or cell disruption. We
show that SPME-GC/MS is a sensitive, fast, and accu-
rate approach to study changes in volatile compounds
generated by the filamentous fungi.
Our studies demonstrate that A. parasiticus produces

a variety of volatile organic compounds including several
classes of intermediates and products associated with
catabolism of the branched chain amino acids (leucine,
isoleucine, and valine) and lipids; alcohols, organic acids,
esters, and aldehydes were also detected. Our data sug-
gest that A. parasiticus catabolizes free branched chain
amino acids (endogenously synthesized, or exogenously
added); these may either enter the catabolic pathway
directly, or they could be used as a carbon source, thus
producing detectable levels of metabolic cross talk.
2-ketoacids are also synthesized de novo as late inter-

mediates in branched chain amino acid biosynthesis
pathways; they can be converted to the corresponding
alcohols and esters. Our feeding studies provide evi-
dence that fungal volatile compounds originate from
branched chain amino acids catabolism; however, we
can not rule out the possibility that 2-ketoacids

generated de novo through biosynthetic pathway serve
as an additional precursor for volatile synthesis.
We also demonstrate that the number of volatile com-

pounds produced in culture depends on the composi-
tion of the growth medium, the presence or absence of
light, and also on the status of secondary metabolism in
the fungal cell. A genetic block in aflatoxin biosynthesis
in AFS10 and ATCC 36537 resulted in a decrease in
formation of isoleucine- and valine-derived acids and
esters; intermediates in leucine catabolism (except for 3-
methylbutanal) were barely detected. These data support
the idea that secondary metabolism (aflatoxin biosynth-
esis) is an integrated part of the cellular metabolism.
Our data show that disruption of secondary metabolic

pathways in ΔveA correlate with dramatic changes in
carbon flow through primary metabolic pathways. The
most significant metabolic changes were observed in
catabolism of branched chain amino acids and forma-
tion of ethanol in A. parasiticus; the data strongly sug-
gest that VeA acts as a negative regulator of these
processes at the transcriptional level. Based on previous
and current work, we propose a model for the associa-
tion between secondary metabolism and catabolism of
branched chain amino acids and ethanol biosynthesis in
A. parasiticus; the model proposes that Velvet A plays a
key regulatory role in the coordination of carbon flow
through these metabolic processes (Figure 7).
How can one explain the changes in carbon flow

observed in ΔveA? Under conditions studied (liquid
shake culture, no development occurs) disruption of veA
is thought to impair most if not all of secondary meta-
bolism [32,52]. Thus it is reasonable to suggest that the
cell must re-structure and re-direct its metabolism and
carbon flow in order to maintain cellular homeostasis.
An increase in production of ethanol and branched
chain alcohols and esters may serve as a compensatory
mechanism to maintain cellular redox balance and to
promote carbon removal from the cell. Our data suggest
that, at least at the transcription level, accumulation of
acetyl-CoA and propionyl-CoA in SU-1 are balanced by
channeling through polyketide biosynthesis, the methyl-
citrate cycle, and ethanol formation. At 40 h, the ΔveA
strain, which is aberrant in secondary metabolism, com-
pensates for the increase in accumulation of propionyl-
CoA by increasing methylcitrate cycle activity as well as
the formation of ethyl-propionate and corresponding
esters. Acetyl-CoA is re-directed through ethanol bio-
synthesis. The block in secondary metabolism in ΔveA,
also directs carbon flow through formation of branched
chain acyl-CoA-derived alcohols, acids and esters. At 72
h, these compensatory mechanisms in ΔveA likely dis-
continue resulting in the accumulation of acetyl-CoA
and propionyl-CoA, and in the activation of a feed-back
inhibition mechanism that affects b-oxidation both in
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mitochondria and peroxisomes. In this scenario, VeA
controls b-oxidation indirectly through accumulation of
acetyl-CoA and propionyl-CoA. However, whether the
effect of VeA on gene transcription is mediated directly
through protein-protein interactions, indirectly through
intracellular biochemical changes, or both, remains to
be elucidated.
One alternative explanation for the observed changes

in carbon flow in ΔveA relates to studies on the bio-
synthesis of polyketide antibiotics by Streptomyces spp.
The polyketides virginiamycin, tautomycin, mananumy-
cin, butyrolactols, and antraquinones are generated by
condensation of starter units including isobutyryl-CoA,
isovaleryl-CoA, and 2-methylbutyryl-CoA; the latter
are derived from catabolism of the branched chain
amino acids valine, leucine, and isoleucine respectively
[71,72]. We propose that Aspergillus spp. synthesize
polyketide(s) using branched acyl-CoA as precursors
that originate through catabolism (or biosynthesis) of
branched chain amino acids and or b-oxidation of fatty
acids, and that veA positively regulates this biosyn-
thetic pathway. Maggio-Hall et al. [39] provided evi-
dence that mitochondrial b-oxidation of fatty acids and
catabolism of branched chain amino acids utilize the
same acyl-CoA dehydrogenase encoded by scdA. We
hypothesize that, in the presence of VeA, b-oxidation
of fatty acids and catabolism of branched chain amino
acids occur in mitochondria and provide the necessary
starter units for biosynthesis of polyketides, similar to
the situation observed in Streptomyces spp. In ΔveA,
the biosynthesis of these polyketide(s) is blocked,
which causes a shift in metabolism to stimulate accu-
mulation of branched chain alcohols and branched
chain esters (Figure 8). The regulatory feed back
mechanisms underlie the decline in b-oxidation of
fatty acids. Interestingly, valine is synthesized also in
the mitochondrion [73]. Alternatively, A. parasiticus
produces other secondary metabolites derived from
branched chain amino acids. Future work is focused
on testing the hypothesis stated above.
VeA is a global regulator of morphogenesis and sec-

ondary metabolism in Aspergillus spp [12,24,32,52]; this
gene is involved in transcriptional regulation of several
hundred genes [74]. Our work provides additional
mechanistic details about the molecular machinery by
which VeA regulates gene expression and therefore con-
idiation and sclerotia formation. We demonstrated that
deletion of veA results in accumulation of volatile com-
pounds with biological activity, which in turn, partici-
pate in the regulation of developmental processes. What
is the role of LaeA that forms a protein complex with
VeA in this regulation? Future studies are necessary to
better understand the mechanisms that underlie this
phenomenon.

Conclusions
1) SPME-GC/MS volatile profiling analysis is a powerful
approach to identify intracellular metabolic changes and the
direction of carbon flow in filamentous fungi. An important
practical advantage of this approach is that there is no need

Figure 8 VeA controls intracellular carbon flow in Aspergillus
parasiticus. The schematic illustrates compartmentalization of
biosynthesis of secondary metabolites, branched chain amino acid
catabolism, and biosynthesis of ethanol in Aspergillus. Acetyl-CoA is
produced in the mitochondrion, the peroxisome and in the
cytoplasm; acetyl-CoA is the precursor of aflatoxin and other
secondary metabolites [4]. Early steps in aflatoxin biosynthesis occur
in peroxisomes [22]; the middle and late steps take place in
aflatoxisomes [4,12]. The biosynthesis and catabolism of branched
chain amino acids occur in the mitochondrion; branched chain acyl-
CoAs serve as the precursors of branched chain acids, branched
chain alcohols and branched chain esters. Acyl-CoA and acetyl-CoA
serve as the precursors of the unknown polyketide X. Ethanol is
produced through nonoxidative decarboxylation of pyruvate
followed by conversion of acetaldehyde to ethanol by
alcoholdehydrogenase; acety-CoA may also be converted to
ethanol. VeA negatively regulates branched chain amino acid
catabolism and ethanol biosynthesis. In addition, VeA is a positive
regulator of b-oxidation of fatty acids in mitochondria and
peroxisomes during the late stages of stationary phase. When
secondary metabolism is blocked in ΔveA, carbon flow is re-directed
to elevated ethanol production and branched chain amino acid-
derived volatiles. Overall, VeA is “a master-coordinator”, which plays
a role in regulation of carbon flow through metabolic processes
(primary and secondary) in different cellular compartments. Known
metabolic and regulatory pathways are shown by solid lines;
hypothesized pathways are indicated by dashed lines. Abbreviations:
BCAA, branched chain amino acids; PM, plasma membrane.
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to calculate individual metabolite concentration or to dis-
rupt the cells. 2) VeA coordinates biosynthesis of secondary
metabolites with catabolism of branched chain amino acids
and alcohol biosynthesis. 3) Our work provides insight on
how changes in intracellular chemical development are
linked to morphological development. 4) Understanding
carbon flow through secondary metabolic pathways and
catabolism of branched chain amino acids is essential for
controlling and customizing production of natural products.

Methods
Strains, growth media, and growth conditions
The isogenic A. parasiticus strains used in this study were
derived from SU-1 (ATCC 56775), a wild type aflatoxin
producer (Table 1). AFS10 is an aflatoxin non-producing
strain derived from the parent strain, SU-1; gene disruption
of aflR in AFS10 blocks aflatoxin synthesis and expression
of several aflatoxin genes. AFS10 was kindly provided by
Dr. J. Cary [33,75]. A. parasiticus ATCC36537 (ver-1, wh-
1) was generated from A. parasiticus SU-1 by U.V. irradia-
tion [76]. This strain accumulates the aflatoxin pathway
intermediate versicolorin A due to a point mutation in
Ver-1A at nucleotide residue 287 (G to A) thus resulting in
a non-functional enzyme [77]. The veA deletion strain A.
parasiticus ΔveA (ver-1, wh-1, pyrG, ΔveA::pyrG) was gen-
erated from A. parasiticus CS10 (ver-1, pyrG, wh-1) by a
double-crossover event exchanging the pyrG selectable
marker for the veA coding region [32]. CS10 was in turn
generated from A. parasiticus ATCC36537 by spontaneous
mutation using N-methyl-N’-nitro-N-nitrosoguanidine fol-
lowed by enzymatic analysis [78].
YES liquid medium (contains 2% yeast extract and 6%

sucrose; pH 5.8) was used as an aflatoxin inducing
growth medium. A chemically defined glucose minimal
salts (GMS) medium supplemented with 5 μM Zn2+ was
prepared as described elsewhere [79]. YGT medium
(0.5% [wt/vol] yeast extract, 2% [wt/vol] glucose, and 1
ml of trace element solution per liter of medium) was
prepared as described previously [32]. Coconut agar
medium was prepared as described by Mahanti et al.
[22]. 104 spores/ml were inoculated into liquid medium.
To analyze the effect of fungal volatiles on aflatoxin

biosynthesis and fungal development, the fungus was
grown in 60 × 15 mm Petri dish lids. 104 spores were
center inoculated onto the agar medium. Three lids
were placed inside a larger, 150 × 15 mm Petri dish as
described previously [53]. This system allowed free gas
and volatile exchange between colonies inside the large
dish while preventing direct colony contact.
Growth of A. parasiticus strains was estimated by dry

weight of the mycelia. Mycelia were harvested at appro-
priate times of growth by filtration through Miracloth
(Calbiochem/EMD Biosciences, La Jolla, CA) and dried
for 48 h at 90°C.

Detection of aflatoxin B1, B2, G1, G2 and norsolorinic acid
Aflatoxins in the agar medium and mycelium were
extracted 3 times with 5 ml chloroform (15 ml total).
The extracts were dried under a stream of N2 and re-
dissolved in 70% methanol. Aflatoxins were detected by
TLC and ELISA as described by Roze at al. [80]. ELISA
provided an estimation of AFB1 levels, whereas TLC
enabled one to estimate levels of AFB1, AFB2, AFG1,
and AFG2. Norsolorinic acid was extracted from the
agar and mycelium with chloroform and then acetone,
and its quantity was analyzed by TLC [81].

Evaluation of conidiation
A. parasiticus conidia were harvested and their number
per colony was estimated as described by Roze et al. [80].

Volatile compound analysis by SPME-GC/MS
Sampling and volatile analysis were performed essen-
tially as described previously [42] with minor modifica-
tions. Sample preparation and SPME analysis. Twelve
ml of fungal culture were harvested at regular intervals
and dispensed into 22 ml clear screw cap vials equipped
with Mininert® Valves (all from Supelco, Bellefonte, PA).
Vials with cultures were pre-equilibrated at 30°C (the
same temperature we used for fungal growth) in a water
bath for at least 30 min, shaking at 50 rpm, before head-
space gases were sampled at 30°C. A 65 μm PDMS/DVB
SPME fiber (Supelco) was conditioned at 250°C over-
night. Sampling was performed at 30°C by placing the
fiber through the Mininert Valve into the headspace
above the fungal culture for 3 min. Vials were continu-
ously swirled at 100 rpm during incubation and SPME
exposure. GC/MS parameters. Volatiles were desorbed
from the fiber in a gas chromatograph (HP-6890, Hew-
lett-Packard Co., Wilmington, DE) injection port for 3
min; absorption and desorption time was optimized as
described in [42]. Volatiles were separated on a 29 m/
250 μm i.d. capillary column HP-5MS (Hewlett-Packard
Co., Wilmington, DE) having a film thickness 0.25 μm.
The first 20 cm of the column was cooled with liquid
nitrogen during the desorption process to cryofocus the
volatiles. Ultrapure helium (99.999%) was used as a car-
rier gas at a flow rate of 1.5 ml/min. The initial tem-
perature of the column (40°C) was increased upon
removal of liquid nitrogen at 60°C/min to obtain a final
temperature of 250°C, which was maintained for 1 min.
Following chromatographic separation, metabolites were
fragmented with an electron ionization source and ion
masses were detected by time-of-flight mass spectrome-
try (FCD-650, LECO Corp., St. Joseph, MI). Preliminary
identification of metabolites was achieved by compari-
son of their mass spectra with those of authenticated
chemical standards contained in a mass spectrum library
(National Institute for Standard Technology, Search
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Version 1.5, Gaithersburg, MD). A total of 4 to10 biolo-
gical replicates were performed for each strain and con-
dition. Only compounds detected in 50% or more
replicates were then confirmed by comparison of their
GC retention time, MS ion spectra and retention index
(RI). Finally, the compounds with probability values
below 70% were rejected.

Ethanol measurements
Twelve ml of fungal culture were dispensed into 22 ml
clear screw cap vials equipped with Mininert® Valves (all
from Supelco). Vials were incubated at 30°C for at least
30 min before headspace gases were sampled and etha-
nol levels were determined by means of gas chromato-
graphy (GC) using ethanol standards as described
previously [80].

Assessment of sclerotia production
Small (60 × 15 mm) agar plates were center-inoculated
with 104 conidiospores and placed into a large Petri dish
(150 × 15 mm) as described above. The cultures were incu-
bated at 30°C in the dark at 90% relative humidity. After 9
to 17 days, the colonies were sprayed with 95% ethanol to
enhance visualization of sclerotia. The number of sclerotia
per plate was assessed. The viability of sclerotia was tested
by placing 5 randomly chosen sclerotia onto YES agar
medium which was incubated for 7 days in the dark.

Feeding of branched chain amino acids
Conidiospores (104/ml) were inoculated into YES liquid
medium and incubated for 48 h at 30°C as described
above. Sterile solutions of L-leucine, L-isoleucine, or L-
valine (all from Sigma, St. Louis, MO) in YES liquid
medium were added to a final concentration of 0.03 M
and incubation continued for an additional 18 h. Analy-
sis of volatiles was conducted as described above.

Analysis of leucine, isoleucine, and valine accumulation
using LC/MS/MS
Cultures were inoculated into YES liquid medium and
incubated for designated periods of time at 30°C as
described above. 1 ml of each culture (containing med-
ium plus mycelia) was extracted with 10 ml solvent
(acetonitril:isopropanol:water = 3:3:2) for 1 h at RT. The
extract was filtered through Whatman #1 filter paper,
then through a 0.45 μm sterile filter (MILLEX® HA,
Millipore, Carrigtwohill, Co. Cork, Ireland); the extract
was stored at -20°C. Ten μl of each extract were ana-
lyzed by a 3200 Q-Trap LC/MS/MS system (Applied
Biosystems, Foster City, CA) at the RTSF/Mass Spectro-
metry Facility, MSU, using a ZIC-pHILIC column
(SeQuant Merck, Darmstadt, Germany); acetonitril and
10 mM ammonium acetate in H2O were used as sol-
vents with gradients of acetonitrile 98%, 50%, 5%.

Analysis of gene expression using RT-PCR
Total RNA extraction and preparation of cDNA was con-
ducted as described elsewhere [14]. Primers (Figure 6) were
designed based on an A. flavus genome database http://
www.aspergillusflavus.org; the A. flavus genome exhibits
95-98% similarity to the A. parasiticus genome [12,14].

Additional material

Additional file 1: Figure S1 - Growth of A. parasiticus strains in YES
liquid medium. Conidiospores were inoculated into 100 ml of liquid YES
medium at 104/ml and the cultures were grown at 30°C, with shaking
at150 rpm, in the dark for designated periods of time. Dry weight was
estimated as described in Methods.

Additional file 2: Figure S2 - SPME-GC/MS headspace gas analysis
of selected volatile compounds produced by aspergilli grown in
YES medium in the dark for 72 h. Conidiospores were inoculated into
100 ml of liquid YES medium at 104/ml and the cultures were grown at
30°C, with shaking at 150 rpm, in the dark for 72 h. Each culture was
grown in two individual flasks. Each experiment was conducted in
triplicate. The results are presented as an average of six measurements of
relative peak area × 104 + S.E. R.T., retention time, sec.

Additional file 3: Figure S3 - Production of fungal volatiles through
pathways of branched chain amino acid catabolism. 2-ketoacids, the
main intermediates, are formed through enzymatic transamination of
branched chain amino acids; they can also be synthesized de novo. 2-
keto acid decarboxylase leads to formation of the corresponding
alcohols. 2-ketoacid dehydrogenase leads to formation of the
corresponding CoA derivatives and, subsequently to methyl and ethyl
esters.

Additional file 4: Figure S4 - Branched chain amino acid-derived
volatiles generated by SU-1 grown for 48 h and 72 h in light.
Conidiospores were inoculated into 100 ml of liquid YES medium at 104/
ml and the cultures were grown at 30°C, with shaking at150 rpm, in the
light for 48 h and 72 h. Volatiles were analyzed as described in Methods.

Additional file 5: Figure S5 - Branched chain amino acid-derived
esters detected in A. parasiticus strains. *, esters unique to ΔveA.

Additional file 6: Figure S6 - Amino acid sequence alignment of the
putative A. flavus branched chain amino acid aminotransferases
AFLA_113800 and AFLA_044190 with yeast BAT1 and BAT2. Amino
acid sequences were aligned using Clustal multiple sequence alignment
program. AFLA_113800 exhibits 61% identity to BAT1 and 60% identity
to BAT2. AFLA_044190 exhibits 43% identity to BAT1 and 44% identity to
BAT2. The highlighted lysine residue represents the active site of the
protein in E.coli. An asterisk was added below the sequences at
conserved amino acid.

Additional file 7: Figure S7 - Amino acid sequence alignment of the
putative A. flavus alcohol dehydrogenase, AFLA_048690, with the
yeast alcohol dehydrogenase, ADH1. Amino acid sequences were
aligned using Clustal multiple sequence alignment program.
AFLA_048690 exhibits 57% identity to yeast ADH1. An asterisk was added
below the sequences at conserved amino acid.

Abbreviations
SPME-GC/MS: solid phase microextraction - gas chromatography/mass
spectrometry; NIST: National Institute for Standard Technology; YES: yeast
extract sucrose; GMS: glucose minimal salts.
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