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Abstract

Background: Syringolin A, an important virulence factor in the interaction of the phytopathogenic
bacterium Pseudomonas syringae pv. syringae B728a with its host plant Phaseolus vulgaris (bean), was
recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A
is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of
a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a
second valine via a very unusual ureido group. Analysis of sequence and architecture of the
syringolin A synthetase gene cluster with the five open reading frames sylA-sylE allowed to formulate
a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but
left the biosynthesis of the unusual ureido group unaccounted for.

Results: We have cloned a 22 kb genomic fragment containing the sylA-sylE gene cluster but no
other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant
cosmid into Pseudomonas putida and P. syringae pv. syringae SM was sufficient to direct the
biosynthesis of bona fide syringolin A in these heterologous organisms whose genomes do not
contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the
presence of NaH!3CO; revealed preferential 3C-labeling at the ureido carbonyl position.

Conclusion: The results show that no additional syringolin A-specific genes were needed for the
biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the
ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by
carbamylation of valine mediated by the sylC gene product(s). A similar mechanism may also play a
role in the biosynthesis of other ureido-group-containing NRPS products known largely from
cyanobacteria.

Background topathogenic bacterium Pseudomonas syringae pv. syringae
Syringolins are a family of closely related cyclic peptide  (Pss) in planta and under certain culture conditions [1,2].
derivatives that are secreted by many strains of the phy-  Syringolin A, the major variant, was shown not only to
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induce acquired resistance in rice and wheat after spray
application, but also to trigger hypersensitive cell death at
infection sites of wheat and Arabidopsis plants infected by
compatible powdery mildew fungi [3,4]. Recently, syrin-
golin A was shown to be an important virulence factor in
the interaction of Pss B728a with its host plant Phaseolus
vulgaris (bean), and its cellular target has been identified.
Syringolin A irreversibly inhibits the eukaryotic proteas-
ome by a novel mechanism, representing a new structural
class of proteasome inhibitors [5,6].

Structure elucidation revealed that syringolin A is a tripep-
tide derivative consisting of an N-terminal valine followed
by the two non-proteinogenic amino acids 3,4-dehydroly-
sine and 5-methyl-4-amino-2-hexenoic acid, the latter
two forming a twelve-membered macrolactam ring. The
N-terminal valine is in turn linked to a second valine via
an unusual ureido group (Figure 1A; [1]). The minor var-
iants syringolin B to syringolin F differ from syringolin A
by the substitution of one or both valines with isoleucine
residues, by the substitution of 3,4-dehydrolysine with
lysine, and by combinations thereof [2]. The structure of
syringolin A suggested that it was synthesized by a non-
ribosomal peptide synthetase (NRPS), large modular
enzymes that activate and condense amino acids accord-
ing to the thiotemplate mechanism (for reviews see e.g.
[7-9]). We previously cloned and delimited by mutational
analysis a genomic region from Pss B301D-R containing
five open reading frames (sylA-sylE) necessary for syringo-
lin biosynthesis (Figure 1B; [10]). Whereas sylA and sylE
encode a putative transcription activator and an exporter,
respectively, sylC encodes a typical NRPS module pre-
dicted to activate valine, whereas sylD codes for two addi-
tional NRPS modules (of which the first is predicted to
activate lysine and the second is predicted to activate
valine [10]) and a type I polyketide synthetase (PKS)
module. Type I PKS are also modular enzymes that, simi-
lar to fatty acid synthesis, extend a starter molecule by
condensation/decarboxylation of malonate extender
units (for reviews see e.g. [11,12]). The analysis of the
structure and architecture of the syl gene cluster led to the
postulation of a model that completely accounts for the
biosynthesis of the tripeptide part of syringolin A, includ-
ing its ring structure with the 5-methyl-4-amino-2-hexe-
noic acid and the 3,4-dehydrolysine (Figure 1C, [10]).
However, although the addition of the ureido group and
its attached second valine could not be explained by the
model, the syl gene cluster did not contain additional
open reading frames, which, if present, could potentially
have been involved in the biosynthesis of this unex-
plained part.

Here we show that the genes sylA-sylE are sufficient to
direct the biosynthesis of bona fide syringolin A when het-
erologously expressed in Pseudomonas putida and Pss SM,
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two organisms which do not produce syringolin A and
have no syl gene cluster homolog in their genomes. Thus,
biosynthesis of the ureido group with its attached termi-
nal valine is achieved without additional syringolin A-spe-
cific genes (i. e. genes with no other function than in
syringolin A biosynthesis). We hypothesized that biosyn-
thesis of the ureido group would most likely be accom-
plished by the product of the sylC gene, which would, in
addition to the extracyclic peptidyl valine, also activate
the terminal valine and join the two residues by incorpo-
ration of a carbonyl group derived from hydrogen carbon-
ate/carbon dioxide, thus forming the ureido moiety. We
demonstrate by NMR spectroscopic analysis of syringolin
A isolated from Pss cultures grown in the presence of
NaH!13COj, that the 13C isotope is preferentially found at
the position of the ureido carbonyl atom. These results
support our hypothesis, which may be of relevance for the
hitherto unknown biosynthesis of other ureido-group-
containing NRPS products largely known to be produced
by cyanobacteria [13-20].

Results

Biosynthesis of syringolin A in heterologous organisms

In order to test whether the sylA-sylE gene cluster was suf-
ficient to direct syringolin A biosynthesis, we constructed
a cosmid containing the sylA-sylE genes but no other com-
plete gene by taking advantage of Ascl and NotI restriction
sites flanking the syl gene cluster (Figure 1B). Southern
blot analysis of Ascl/Notl-digested genomic DNA of Pss
B301D-R probed with a sylA gene fragment labeled the
expected 22 kb fragment and thus confirmed the unique-
ness of the restriction sites in the relevant genome region
(data not shown). Thus, Pss B301D-R genomic DNA
digested with Ascl and Notl was separated by agarose gel
electrophoresis. Fragments in the 20-23 kb size range were
eluted and cloned into the wide host range cosmid
PLAFR3 [21]. After packaging into lambda phages and
transfection into E. coli XL-1Blue, the library was screened
with a radiolabeled sylA gene probe. Positive clones were
isolated and confirmed to contain the complete syl gene
cluster by PCR amplification and sequencing of the
expected insert ends. One of the confirmed clones was
designated pPL3syl and chosen for further work.

To test the functionality of pPL3syl, the markerless Pss
B301D-R mutant Asyl was constructed in which the com-
plete syl gene cluster was deleted. The pPL3syl cosmid was
then mobilized into the Asyl deletion mutant by triparen-
tal mating. We previously showed that infiltration of
syringolin A-producing Pss strains or isolated syringolin A
into rice leaves leads to the accumulation of transcripts
corresponding to the defense-related Pir7b gene (encod-
ing an esterase; [22]), whereas strains or mutants unable
to synthesize syringolin A do not activate this gene [1,23].
Syringolin A was originally identified and isolated based
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Structure and biosynthesis model of syringolin A. A. Structure of syringolin A. Amino acid constituents are delimited by
bars. Val, valine. B. Genomic region of Pss B30I D-R containing the sylA-sylE genes. Boxes above and below the line denote
OREFs on the top and the bottom strand, respectively. Arrows indicate restriction sites used for cloning of the gene cluster into
the cosmid pPL3syl. The sylA, sylB, and sylE genes encode a LuxR-type transcription activator, a rhizobitoxin desaturase-like
protein thought to desaturate the lysine residue, and an efflux transporter, respectively [10]. The sylC gene encodes an NRPS
module, while sylD codes for two NRPS modules and one PKS module [10] C. Biosynthesis model of the tripeptide part of
syringolin A. The open boxes represent domains in modules of the syringolin A synthetase labeled with C, condensation
domain; A, adenylation domain; PC, peptide carrier protein; KS, ketoacyl synthase; AT, acyl transferase; DH, dehydratase; KR,
ketoreductase; AC, acyl carrier protein; TE, thioesterase. The A domains of the NRPS modules are thought to activate valine
(NRPS modl), lysine (NRPS mod2), and valine (NRPS mod3) [10]. The question mark indicates the unexplained synthesis and
attachment of this group. The figures are adapted from [10].

on its action on the Pir7b gene in rice [1]. We thus infil-
trated the B301D-R wild-type strain, the syringolin-nega-
tive mutants Asyl and sylA_KO (contains a plasmid
insertion interrupting the sylA transcription activator gene
[10]), as well as Asyl (pPL3syl), the deletion mutant com-

plemented with pPL3syl, into rice leaves. RNA was
extracted and subjected to gel blot analysis with regard to
Pir7b transcript accumulation. As expected and in contrast
to the wild type, the syringolin A-negative mutants did not
induce Pir7b transcript accumulation, whereas the dele-
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Gel blot analysis of Pir7b transcript accumulation. A.
RNA was extracted from rice leaves infiltrated with water
(C), Pss B30ID-R (WT), a sylA plasmid insertion mutant
(sylA_KO), a syl cluster deletion mutant (Asyl), and Asyl
(pPL3syl), the deletion mutant complemented with the wild-
type syl gene cluster. Top panel, autoradiogram (exposed for
5 h); bottom panel, ethidium bromide (EtBr)-stained agarose
gel. B. Lanes were loaded with RNA extracted from rice
leaves infiltrated as indicated. C, water control; B30ID-R, Pss
wild-type strain; P.p, P. putida P3; P.p. (pPL3syl), P. putida P3
transformed with the syl gene cluster; SM, Pss SM; SM
(pPL3syl); Pss SM transformed with pPL3syl, and syringolin A
solutions of the indicated concentrations. Top panel, autora-
diogram (exposure times indicated on top), bottom panel,
EtBr-stained gel.

tion mutant complemented with the pPL3syl cosmid led
to a much stronger induction of the Pir7b gene (Figure
2A). This strongly suggested that pPL3syl contained a
functional syl gene cluster able to direct syringolin A syn-
thesis in the Asyl deletion mutant. This does not exclude
the possibility that genes not present in the syl gene cluster
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are necessary for syringolin A production because such
genes would also be present in the Asyl mutant back-
ground.

Next we wanted to mobilize pPL3syl into Pseudomonas
strains not carrying syl gene homologs and lacking syrin-
golin A production as evidenced by PCR, DNA gel blot
analysis of genomic DNA, high performance liquid chro-
matography (HPLC) analysis of culture supernatants with
regard to syringolin A content, infiltration into rice leaves
followed by monitoring of Pir7b transcript accumulation,
and whole genome sequence comparisons where possible
(data not shown). After repeated unsuccessful attempts to
transfer pPL3syl into the P. syringae pv. tomato DC3000
strain (all tetracycline-resistant putative transformants
analyzed contained deletion variants of pPL3syl), the cos-
mid was successfully transferred into the non-pathogenic
bacterium P. putida P3 [24] and Pss SM, a strain originally
isolated from wheat [23,25]. Gel blot analysis of RNA
extracted from rice leaves infiltrated with parental and
transformed strains showed that, as expected, P. putida P3
and Pss SM did not induce Pir7b transcript accumulation.
In contrast, both strains lead to Pir7b gene induction
when carrying the pPL3syl cosmid (Figure 2B), suggesting
that pPL3syl conferred the ability for syringolin A biosyn-
thesis to these strains.

To confirm this, the transformed strains were grown in
shaken cultures in SRM,; medium and conditioned media
were analyzed by HPLC. As shown in Figure 3, both
strains produced a compound eluting at 15.5 min, the elu-
tion time of the syringolin A standard. Peaks were col-
lected from multiple HPLC runs and subjected to mass

SM(pPL3syl)

SM
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P.p.

B301D-R
SylA standard
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Figure 3

HPLC analysis of syringolin A content in conditioned
SRM, media. Conditioned media were sterile-filtrated and
20-pl-aliquots were loaded on the column. Absorption was
monitored at 206 nm. Labels of HPLC traces are the same as
in the legend to Figure 2B.
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spectrometry. HPLC-high resolution-electrospray ioniza-
tion-mass spectrometry (HPLC-HR-ESI-MS) of the peaks
from Pss SM and P. putida P3 carrying pPL3syl, and the Pss
B301D-R wild type showed quasi-molecular ions [M+H]*
at m/z 494.29808 (1.5 ppm difference from calculated
exact mass), 494.29653 (1.1 ppm), and 494.29799 (1.4
ppm), respectively, matching the empirical formula
C,,H, oN:O.* (protonated adduct of syringolin A; calcu-
lated exact mass 494.29731). We conclude from these
experiments that the syl genes contained in pPL3syl are
sufficient to direct syringolin A biosynthesis in these het-
erologous strains and no further syringolin A-specific
genes, i.e. genes that exclusively function in syringolin A
biosynthesis, are necessary.

The ureido carbonyl group of syringolin A is incorporated

from bicarbonatelcarbon dioxide

The above results raised the question of how the ureido-
valine is synthesized and incorporated into syringolin A.
We hypothesized that this would most likely be accom-
plished by the product of the sylC gene, which would, in
addition to the N-terminal valine of the tripeptide part of
syringolin A, also activate the second valine and join the
two residues via their amino groups formally by amida-
tion of carbonic acid, thus forming the ureido moiety. If
true, feeding syringolin A-producing cultures with 13C-
labeled hydrogen carbonate should result in syringolin A
that is preferentially labeled with 13C at the ureido carbo-
nyl position. Thus, Pss B301D-R transformed with
pOEAC, a plasmid carrying the sylA transcriptional activa-
tor gene under the control of the lacZ promoter, was
grown in SRM,; medium. After 48 h, 13C-labeled sodium
hydrogen carbonate was added to a final concentration of
70 mM and the culture was further grown for 20 h. Syrin-
golin A was isolated from conditioned medium as
described [4] and subjected to 13C NMR analysis.

The spectrum of labeled syringolin A was normalized in
order to get the same signal intensities for the valine
methyl groups as in the unlabeled sample. Comparison of
the normalized NMR spectra revealed that the signal from
the ureido carbon atom in 3C-labeled syringolin A was
45-fold stronger than the corresponding signal from unla-
beled syringolin A (Figure 4). Inspection of the resolved
13C satellite of the valine methyl group at lowest field in
the 'H spectrum of labeled syringolin A (data not shown)
suggests a 13C content close to natural abundance. There-
fore, the 45-fold signal enhancement in labeled syringolin
A directly corresponds to the absolute 13C enrichment at
this site. The normalized signal strengths of all other C
atoms were equal in labeled and unlabeled syringolin A,
with the exception of the C4 position of 3,4-dehydroly-
sine, whose signal was enhanced approximately 16-fold
in 13C-labeled syringolin A (Figure 4A, B). Inspection of
biosynthetic pathways using the KEGG database [26]
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revealed that this can be attributed to a carboxylation reac-
tion in the biosynthesis of lysine. The C4 atom of lysine
represents the C4 atom of L-aspartate-4-semialdehyde, a
derivative of aspartate, which is condensed to pyruvate to
yield the intermediary compound L-2,3-dihydrodipicoli-
nate in bacterial lysine biosynthesis. The C4 atom of
aspartate in turn originates from the carboxylation of
pyruvate to oxaloacetate, an intermediary compound in
the tricarboxylic acid cycle, which is transaminated to
aspartate. Thus, enhanced 13C-labeling of lysine with
H13CO;-at the C4 position is to be expected. We note that
malonate will also be labeled by H!3CO;- as it is derived
from acetate by carboxylation. However, the label will be
removed by the condensation/decarboxylation of
malonate to the peptide chain during syringolin A biosyn-
thesis. We conclude from this analysis that our hypothesis
is correct, i.e. that the ureido carbonyl moiety in syringo-
lin A originates from the incorporation of hydrogen car-
bonate/carbon dioxide.

Discussion

We have demonstrated that the syl gene cluster is sufficient
to direct syringolin A synthesis in heterologous organ-
isms. Although the biosynthesis model presented earlier
[10] plausibly explained every structural feature of the
syringolin A tripeptide part through the enzymatic actions
of the sylB, sylC, and sylD gene products, the generation
and condensation of the ureido valine remained enig-
matic. As the other genes present in the syl cluster encode
a transcriptional activator (sylA gene) and an exporter
(sylE gene), a plausible hypothesis was that the sylC-
encoded NRPS module not only activated the N-terminal
peptidyl valine, but also the ureido valine, and that the
ureido carbonyl moiety is incorporated from hydrogen
carbonate/carbon dioxide. As shown above, in vivo labe-
ling of syringolin A with 13C-hydrogen carbonate supports
this hypothesis. Currently, we can only speculate how this
is achieved. One possibility is that the quaternary syringo-
lin A synthetase complex may contain two (not necessar-
ily identical) molecules derived from the sylC gene per
SylD polypeptide. Both sylC gene products would activate
valine, or, to a certain degree, isoleucine in minor syringo-
lin variants [2]. The first valine would then be car-
bamylated by HCO;-/CO,, perhaps without the action of
another enzyme, as has been reported for the carbamyla-
tion of a catalytic lysine residue in B-lactamases of class D
[27,28]. The ureido moiety would then be formed by
amide bond formation between the carbamylated valine
and the second valine. In this scenario, it remains unclear
how the first valine, which, like the second one, is envi-
sioned to be bound to the peptide carrier protein domain
by a thioester bond, is released upon ureido bond forma-
tion. It is also conceivable that ureido bond formation is
achieved by a single SylC protein, which contains a con-
densation domain usually absent from starter modules
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Figure 4

13C-NMR spectra of in vivo NaH!3CO;-labeled and unlabeled syringolin A. The spectra of NaH!'3CO;-labeled (A) and
unlabeled (B) syringolin A have been scaled to give equal signal intensities for the methyl groups of the valine residues (17.4,
17.5, 19.0, and 19.1 ppm shifts). The signals at 157.8 ppm (marked I; clipped off) and 132.8 ppm (marked 2) correspond to the
ureido carbonyl group and the lysine C4 position, respectively. DMSO, DMSO solvent signal. C. Scaled-down version of part of
the spectra given in (A) and (B) to show the difference in signal intensity of the ureido carbonyl group in NaH'3CO;-labeled

and unlabeled syringolin A, respectively.

that may be involved. To clarify these issues, more struc-
tural information about the large syringolin A synthetase
and the SylC module must be obtained. The reconstitu-
tion of the enzymatic activities of the module(s) derived
from the sylC gene in vitro will be challenging.

In addition to the syringolin family of compounds, a
number of other natural cyclic peptides mostly isolated
from cyanobacteria have been described in the literature
that contain extracyclic ureido groups linking two differ-
ent amino acids. These include anabaenopeptins from
Anabaena, Oscillatoria, and Planktothrix species [13-16],
ferintoic acids from Mycrocystis aeruginosa [17], pompan-
opeptins from Lyngbya confervoides [18], as well as moza-
mides and brunsvicamides, compounds of presumably
cyanobacterial origin isolated from sponges [19,20].
Bicarbonate/CO, may also be the source of the ureido car-
bonyl group joining two extracyclic amino acids in the

biosynthesis of these compounds, which, to our knowl-
edge, has not been elucidated so far.

Conclusion

Our results show that the syl biosynthesis gene cluster was
sufficient to direct the biosynthesis of bona fide syringolin
A, including the enigmatic ureido group joining two
amino acids. They reveal the source of the ureido carbonyl
group to be bicarbonate/carbon dioxide, which we
hypothesize is incorporated by carbamylation of valine
mediated by the sylC gene product(s). A similar mecha-
nism may also play a role in the biosynthesis of other ure-
ido-group-containing NRPS products known largely from
cyanobacteria.

Methods

Construction and expression of pPL3syl

Unless stated otherwise, standard protocols were used
[29]. Genomic DNA from Pss B301D-R was isolated and
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11 pg were digested with the restriction enzymes Ascl and
Notl. Ascl and Notl sites are both unique in the syl gene
region (GenBank: AI548826) located at position 2052
and 24124, respectively, within the ORFs flanking the
sylA-sylE ORFs (3507-23596). A DNA gel blot was pre-
pared with 1 pg of the digested DNA and probed with a
32P-labeled sylA gene fragment PCR-amplified from
genomic DNA with primers P1 (5'-ccatcgatggagtagagtgat-
ggc) and P2 (5'-ggaattcttacaaaattcccatcttg). The rest of the
digested DNA was separated on a 0.4% agarose gel and
the DNA in the 20-23 kb size range was cut out, electro-
phoretically eluted into a dialysis bag (10 kDa cutoff),
extracted first with 1 volume of phenol and then with 1
volume of phenol-chloroform-isoamylalcohol (25:24:1),
precipitated with ethanol and finally taken up in TE (10
mM Tris-HCI, pH 8; 1 mM EDTA). Fragments were ligated
into the HindIll/BamHI-cut broad host range cosmid vec-
tor pLAFR3 [21] using adaptors prepared by annealing the
oligonucleotide = 5'-cgcgccaagcttcca  with  5'-agctt-
ggaaagcttgg (Ascl/HindIll adaptor) and 5'-ggccgctagtcag-
gag with 5'-gatcctectgactage  (Notl/BamHI  adaptor),
respectively. Ligation products were packaged into
lambda phage particles using the Gigapack III Gold Pack-
aging Kit (Stratagene, La Jolla, California) and the library
was plated out on E. coli XL1-Blue (Stratagene) and
screened according to the instructions of the manufacturer
using the 32P-labeled sylA gene fragment described above
as a probe. Positive clones were isolated and confirmed to
contain the complete syl gene cluster by PCR amplifica-
tion and sequencing of the insert end fragments using
primers 5'-ccggcctacacgcattc (sylA end) and 5'-agcaacct-
ggatgtacgg (sylE end) with the respective adaptor oligonu-
cleotides (see above).

pPL3syl was transferred from XL1-Blue to Pseudomonas
strains by triparental mating using the E. coli helper strain
HB101 (pRK600) [30,31].

Construction of the syl gene cluster deletion mutant syl

Two fragments of 783 bp and 655 bp length flanking the
syl gene cluster on the 5' and 3' side, respectively, were
amplified by PCR from Pss B301D-R genomic DNA using
the primer pairs P3 (5'-cgggatccaacctgaaatgggagagtc; base
given in bold at position 2297 in GenBank:AI548826)
and P4 (5'-agcgcgaggactcaatgtgaaaacaacg; bold base at
position 3072), and P5 (5'-tcacattgagtcctcgegetggtaac;
bold base at position 23600) and P6 (5'-ttctgcagtcaagect-
gacgaaaagc; bold base at position 24247), respectively.
The two bands were isolated and joined by overlap exten-
sion PCR using primers P3 and P6 to yield a fragment
flanked by BamHI and Pstl restriction sites in which the syl
gene cluster from position 3073-23599 (Gen-
Bank:AJ548826) was missing. The deletion is nearly iden-
tical with the one in the completely sequenced P. syringae
pv. tomato DC3000 (GenBank:NC_004578.1), which
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does not contain a syl gene cluster. The fragment was cut
with BamHI and PstI and cloned into the respective restric-
tion sites in the cloning box of the suicide vector
PME3087 (TcR, ColE1 replicon [32]). The recombinant
plasmid was transformed into E. coli S17-1 (thi pro hsdR
recA; chromosomal RP4 (Tra* TcS KmS ApS; transfer gene-
positive, tetracycline-sensitive, kanamycin-sensitive, amp-
icillin-sensitive) [33]) and mobilized into Pss B301D-R.
Tetracycline-resistant colonies were grown in LB medium
over night at 28°C on a rotary shaker (220 rpm). For
selection of tetracycline-sensitive colonies, the overnight
cultures were diluted 100-fold with LB. After 2 h of
growth, tetracycline was added (20 pg/ml final concentra-
tion) and the cultures were grown for 1 h, after which the
bactericide carbenicillin (2 mg/ml final concentration)
was added for 3 h. The bacteria were then collected by cen-
trifugation, and after washing them twice in LB, the selec-
tion procedure was repeated another 3 times. The cultures
were then replica-plated on LB plates with and without
tetracycline (10 pg/ml) and tetracycline-sensitive colonies
were isolated (about 2-3%). The desired deletion mutants
were distinguished from wild-type revertants and verified
by sequencing of a 1.7 kb DNA fragment amplified from
genomic DNA by PCR using primers 5'-attactcgaccagttccg
and 5'-ttacgcaatggtatgatgc which are located outside the
fragment cloned into the suicide vector pME3087 at posi-
tion 2113 and 24385 (GenBank:NC_007005.1), respec-
tively.

Construction of pOEAC

The sylA ORF was amplified from genomic DNA using the
primers P7 (5'-ccatcgatggagtagagtgatggc; Clal site in italics,
translation initiation codon indicated in bold) and P8 (5'-
ggaattcttacaaaattcccatcttg; reverse primer; EcoRI site in ital-
ics, reverse stop codon in bold), digested with Clal and
EcoRI, and cloned into the respective polylinker sites of
the pME6001 (GmR) expression vector [34], thereby plac-
ing it under the control of the lacZ promoter. The resulting
plasmid was named pOEA. As it turned out that pOEA did
not confer gentamycin resistance in SRM,; medium,
POEAC was used, a derivative of pME6014 (TetR) [35],
which, in addition to the lacZ::sylA chimeric gene, con-
tained a sylC::lacZ reporter fusion gene in opposite orien-
tation (the reporter gene is of no relevance in the present
context). To construct pOEAC, the lacZ::sylA fusion gene
was amplified from pOEA with primers P8 (see above)
and P9 (5'-accgtccaacattaatgeagcetgg; upstream of lac pro-
moter; bold base complementary to position 987 of
pBluescript vector (GenBank:X52329)) and joined with a
sylIC promoter fragment (position 5409-5649 of Gen-
Bank:AI548826) that was amplified with primers P10 (5'-
ctgcattaatgttggacggtctge; bold base at position 5409) and
P11 (5'-aactgcagtcatgacggcectcggat; Pstl site in italics, bold
base at position 5649) by overlap extension PCR using
primers P8 and P11. The resulting fragment was digested

Page 7 of 9

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ548826
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ548826
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ548826
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004578.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007005.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X52329
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ548826

BMC Biochemistry 2009, 10:26

with EcoRI and Pstl and cloned between the respective
sites in the polylinker of pME6014.

Bacterial infiltration of rice leaves and RNA gel blot
analysis

Bacterial strains were grown on a rotary shaker (220 rpm)
over night at 28°C in LB containing, where appropriate,
10 pg/ml tetracycline. Bacteria were pelleted by centrifu-
gation, washed twice in distilled water, resuspended in
distilled water at an optical density at 600 nm (ODg,,) of
0.4 (approximately 108 cfu), and infiltrated into first
leaves of 14-day-old rice plants (Oryza sativa cv. Loto; sup-
plied by Terreni alla Maggia, Ascona, Switzerland) as
described previously [23]. RNA was extracted from infil-
trated leaves 16 h after infiltration and subjected to gel
blot analysis using a 32P-labeled Pir7b cDNA probe (Gen-
Bank:Z234270[23]) according to standard procedures [29].

HPLC analysis and mass spectrometry of syringolin A

To analyze conditioned media with regard to syringolin A
content, Pseudomonas strains were grown in SRM,;
medium [36,37] at 28°C for 60 h on a rotary shaker (220
rpm). Bacteria were pelleted by centrifugation and the
supernatant was sterile filtered (0.22 um pore size). Two-
hundred-microliter aliquots were acidified with trifluoro-
acetic acid (TFA; 0.3% final concentration) and subjected
to reverse-phase HPLC with a Reprosil 100-5 C,4250/4.6
column (Dr. Maisch GmbH, Ammerbuch-Entringen, Ger-
many) on a Dionex UltiMate 3000 system (Dionex Cor-
poration, Sunnyvale, CA). Elution was performed
isocratically with 20% acetonitrile and 0.06% TFA in
water at a flow rate of 1 ml/min.

High-resolution electrospray mass spectra were recorded
on a Bruker maXis QTOF-MS instrument (Bruker Dalton-
ics GmbH, Bremen, Germany). The samples were dis-
solved in MeOH and analyzed via continuous flow
injection at 3 pl/min. The mass spectrometer was operated
in positive ion mode with a capillary voltage of 4 kV, an
endplate offset of -500 V, nebulizer pressure of 5.8 psig,
and a drying gas flow rate of 4 I/min at 180°C. The instru-
ment was calibrated with a Fluka electrospray calibration
solution (Sigma-Aldrich, Buchs, Switzerland) that was
100 times diluted with acetonitrile. The resolution was
optimized at 30'000 FWHM in the active focus mode. The
accuracy was better than 2 ppm in a mass range between
m/z 118 and 2721. All solvents used were purchased in
best LC-MS qualities.

I13C-labeling and NMR Spectroscopy

Pss B301D-R was transformed with pOEAC and grown in
LB containing 10 pg/ml tetracycline on a shaker at 28°C
until an OD, of approximately 0.5 was reached. Bacteria
were collected by centrifugation, washed twice with
SRM,; medium, and taken up in SRM,; medium at an
ODy, of 0.3. Fifty-ml cultures were inoculated with 0.01
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volume of the bacterial suspension and incubated at 28°C
on a shaker (220 rpm). After 48 h, NaH!3CO; (98%;
Sigma-Aldrich, Buchs, Switzerland) was added to a final
concentration of 70 mM and incubation was continued
for 20 h. Bacteria were pelleted and syringolin A was iso-
lated from sterile-filtrated conditioned media as described

[4].

H broadband decoupled 13C NMR spectra were recorded
at 25°C on a Bruker Avance III 600 MHz spectrometer
equipped with a cryogenic 5 mm CPDCH probe head
optimized for 13C detection. Two samples were prepared
by dissolving 200 ng of labeled syringolin A in 130 pl
DMSO-d6 and 5 mg of unlabeled syringolin A in 750 pl
DMSO-d6, respectively. The labeled sample was trans-
ferred to a 3 mm Shigemi tube, the unlabeled sample was
transferred to a regular 5 mm NMR tube. The spectral
width in both spectra was 248.5 ppm, the transmitter was
set to 100 ppm. The excitation pulse angle was set to 45°.
The acquisition time was 2.1 s with a waiting time of 0.3
s between two scans. Both spectra were 'H broadband
decoupled using the waltz16 composite-pulse decoupling
scheme. The resulting fid consisted of 157890 total data
points. For the unlabeled syringolin A sample 4000 scans
were accumulated. For the labeled syringolin A sample
29605 scans were accumulated. Both spectra were zero
filled to 131072 complex data points and processed using
an exponential line broadening of 2 Hz. The samples con-
tained no internal chemical shift reference and the spectra
were referenced to the solvent peak (39.5 ppm). By com-
parison with chemical shifts listed in [1] the signals at
157.8 ppm and 132.8 ppm were assigned to the ureido
CO group and the olefinic C at position 4 in the 3,4-dehy-
drolysine moiety, respectively.
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