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Abstract

Background: Mycobacterium tuberculosis DNA topoisomerase | is an attractive target for discovery
of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage
product. It shares a common transesterification domain with other type |A DNA topoisomerases.
There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli
and M. tuberculosis DNA topoisomerase | proteins.

Results: A new protocol for expression and purification of recombinant M. tuberculosis DNA
topoisomerase | (MtTOP) has been developed to produce enzyme of much higher specific activity
than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E.
coli DNA topoisomerase | (EcTOP) in removal of remaining negative supercoils from partially
relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA
cleavage site selectivity with ECTOP showed differences in cleavage site preferences, but the
preferred sites of both enzymes have a C nucleotide in the -4 position.

Conclusion: Recombinant M. tuberculosis DNA topoisomerase | can be expressed as a soluble
protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage
with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C
nucleotide in the -4 position.

Background

DNA topoisomerases are ubiquitous enzymes involved in
the regulation of DNA supercoiling and overcoming top-
ological barriers during replication, transcription, recom-
bination and repair. In bacteria, the major classes of
topoisomerases, type IA and type IIA, modify DNA topol-
ogy by transiently cleaving and rejoining one or two
strands of DNA respectively [1,2]. Both of these classes

form a 5'-phosphotyrosyl enzyme-DNA linkage during
the catalytic cycle of DNA cleavage and religation [1].
Topoisomerases are attractive targets for development of
new anti-infectives [3]. Bacterial DNA gyrase and topoi-
somerase IV from the type IIA class are targets of antibiot-
ics such as quinolones and fluoroquinolones. These
antibiotics exhibit their bactericidal properties by trap-
ping the covalent protein-DNA complexes formed by
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DNA gyrase or topoisomerase IV [4,5]. Although fluoro-
quinolones are effective against a broad spectrum of bac-
teria, alarming increase in fluoroquinolone-resistant
pathogens warrants the need to develop novel drugs
against new cellular targets.

Bacterial topoisomerase I, responsible for relaxing nega-
tively supercoiled DNA, is the most common type 1A
topoisomerase present in almost all bacteria [6,7].
Escherichia coli topoisomerase I (EcTOP) is the well stud-
ied prototype for type IA topoisomerase [8]. EcTOP
relaxes negatively supercoiled DNA through a magne-
sium-dependent, ATP-independent catalytic mechanism.
No specific inhibitor for bacterial topoisomerase I, effec-
tive at a relevant clinical and physiological concentration,
has been identified. Bacterial topoisomerase I, by virtue of
its presence in nearly all bacterial genomes, and in view of
its association with DNA during the vulnerable stage of
cleavage-religation, could be utilized as a target for novel
antimicrobials [3]. This strategy could be useful in devel-
oping drugs to treat highly fatal bacterial diseases like
tuberculosis [9]. The fact that approximately one-third of
the world's population is affected by tuberculosis indi-
cates the need to develop effective drugs against this dis-
ease [10]. Also, since multiple drug resistance is common
in Mycobacterium tuberculosis, it would be significant if a
novel antibiotic targeting M. tuberculosis DNA topoi-
somerase I can be developed [9].

A logical first step towards finding inhibitors selective to
M. tuberculosis topoisomerase I is to characterize the DNA
modification ability of this enzyme. In this study, we
describe a new expression and purification protocol for
recombinant M. tuberculosis topoisomerase I capable of
producing milligrams of pure protein. We also report the
first detailed characterization of this enzyme with respect
to its DNA cleavage sites and relaxation activity under dif-
ferent assay conditions.

Results

Expression and purification of M. tuberculosis
topoisomerase |

Genome sequencing of M. tuberculosis H37Rv strain has
revealed the presence of topA gene Rv3646c which
encodes a DNA topoisomerase I (MtTOP) comprising of
934 amino acids with an estimated molecular weight of
102.3 kDa [11]. Previously, Yang et al [12] have cloned
and purified DNA topoisomerase I from M. tuberculosis
Erdman strain in E. coli BL21 (DE3). Our efforts to express
and purify recombinant MtTOP in E. coli BL21 (DE3) sim-
ilarly by induction of the T7 promoter were frustrated by
the insolubility of the expressed protein. Difficulties have
also been encountered by other researchers [13] while try-
ing to use recombinant DNA topoisomerase I gene
present in genomic libraries of M. tuberculosis and Myco-
bacterium smegmatis to complement the temperature
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dependent deficiency of topoisomerase I (topA) function
in E. coli strain AS17 [14]. Difference in codon usage was
surmised to be one of the possible reasons behind this
result [13]. We overcame these difficulties by expressing
MtTOP from a recombinant plasmid pLIC-MTOP in an E.
coli Arctic express (DE3)RP strain (Stratgene) at low tem-
peratures (12°C). The Arctic express (DE3)RP strain con-
tained a chromosomally integrated T7 RNA polymerase
which was expressed from the lacUV5 promoter. Induc-
tion of T7 RNA polymerase protein synthesis with IPTG
resulted in the expression of the T7 promoter-driven
recombinant protein. In addition, the Arctic express
(DE3)RP strain expressed cold chaperonin proteins
(Cpnl10 and CPn60) and extra copies of tRNAs (recogniz-
ing arginine and proline codons) that facilitated the
expression of recombinant proteins by overcoming issues
of protein solubility and codon bias respectively.

Recombinant MtTOP was soluble and initially expressed
as a hexa-histidine fusion protein only in the presence of
IPTG (Figure 1). Purification of the fusion protein was
achieved using nickel affinity chromatography. Subse-
quent SDS-PAGE analysis (Figure 2A) showed the pre-
dominant presence of only the fusion protein with the
expected molecular weight. The hexa-histidine fusion tag
was cleaved off by TEV protease treatment and MtTOP of
high purity was eluted by increasing the potassium chlo-
ride gradient from a single-stranded DNA cellulose col-
umn (Figure 2B) [15]. The eluted fractions were pooled
and dialyzed into storage buffer. Approximately 12 milli-
grams of purified protein was obtained from 7 L of bacte-
rial culture in LB medium.
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Figure |

Expression of recombinant MtTOP in E. coli Arctic
express (DE3)RP strain. SDS PAGE analysis of total cell
lysate (lanes 1,3) and soluble cell lysate (lane 2,4) of Arctic
express (DE3)RP cells transformed with pLIC-MTOP and
induced with 0 mM (lanes 1,2) and | mM IPTG (lanes 3,4) at
the end of 24 hours of induction in LB at 12°C. M: molecular
weight standards.
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SDS PAGE at different stages of MtTOP purification.
A. Wash (lanes 1—4) and elution (lanes 5-9) fractions of
fusion protein passed through a Ni-NTA agarose column.
Lanes M represents molecular marker and lanes L and F rep-
resent the initial load and flow through of the Ni-NTA agar-
ose column before wash and elution. B. Wash fractions
(lanes 1—4) and potassium chloride gradient elution fractions
(lanes 5—14) of TEV digested fusion protein loaded onto sin-
gle-strand DNA cellulose column.

Characterization of DNA relaxation activity of M.
tuberculosis topoisomerase |

DNA relaxation assay was used to characterize the purified
MtTOP. We compared the ability of MtTOP with that of
similarly purified E.coli topoisomerase I (ECTOP) [16] in
relaxing negatively supercoiled DNA by agarose gel elec-
trophoresis. Initial assays evaluated the minimum
amount of enzyme (MtTOP or EcTOP) required to bring
about complete relaxation of negatively supercoiled DNA
under standard conditions (Figure 3). One unit of enzyme
was defined as the amount of enzyme required to relax 0.5
pg of negatively supercoiled plasmid DNA in 30 min at
37°C. Results indicated that 100 ng of ECTOP and 500 ng
of MtTOP (Figure 3A) constitute one unit of enzyme activ-
ity. However, at lower concentrations of enzyme, = 12.5
ng, there is no difference between the ability of MtTOP
and EcTOP in removing the negative supercoils from the
plasmid DNA substrate (Figure 3).

For a more detailed analysis of the relaxation activity of
the purified enzymes, a time course assay with 50 ng each
of MtTOP and EcTOP was performed (Figure 4). At the
early time points, the rate of removal of the negative
supercoils by the two enzymes was similar. However, as
the plasmid DNA substrate became partially relaxed, the
relaxation activity of MtTOP was less efficient than ECTOP
in removing the residual negative supercoils.

It has been a well known fact that Mg?+ions are required
for the relaxation activity of bacterial type IA topoisomer-
ases, including E. coli topoisomerase I [17,18]. We com-
pared the Mg2*dependence of the relaxation activity of
EcTOP and MtTOP using two different enzyme concentra-
tions (50 ngor 1 unit in a 20-pl assay) and a range of Mg?+
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Figure 3

Relaxation of negatively supercoiled DNA to deter-
mine unit activity. A. 500 ng of negatively supercoiled plas-
mid DNA was subjected to relaxation as per the conditions
in "materials and methods" with the indicated amount of
EcTOP and MtTOP. B. DNA relaxation by different amounts
of EcTOP and MtTOP was quantitated as percent relaxation
for comparison. The percent relaxation was determined by
dividing the distance between the negatively supercoiled
band (SC); and the weighted center of the partially relaxed
band (PR); by the distance between the supercoiled band
(SC); and the fully relaxed band (FR). In simple terms, per-
cent relaxation = (SC-PR)/(SC-FR) [18]. The percent relaxa-
tion values reported are averages of at least three
independent experiments. Error bars denote the standard
error of mean.

levels (Figure 5). At a lower enzyme concentration (50
ng), relaxation by EcTOP had a optimal range of Mg2+
concentrations between 2.5 to 7.5 mM while the optimal
range of Mg2+ concentrations for MtTOP was slightly
higher (5-12.5 mM) (Figure 5B). Similar optimal levels of
Mg2+ were found for the relaxation activities of both the
EcTOP and Mt(TOP at higher enzyme concentrations
equivalent to one unit of enzyme activity, with no relaxa-
tion observed in the absence of Mg?+ (Figure 5A). The
optimal Mg2+ concentrations found here for MtTOP are
higher than the 1 mM concentration determined in previ-
ous work [12]. In other studies involving the characteriza-
tion of the topoisomerase 1 from M. smegmatis, the
optimal Mg2+ concentration for relaxation activity was
found to be about 5 mM [19].

Mapping of DNA cleavage sites using single-stranded DNA

substrates

Although the majority of topoisomerases do not have spe-
cific sequence requirements for cleavage sites, many of
them show at least a certain degree of non -randomness in
cleavage site recognition [6,20]. For example, EcTOP and
Micrococcal luteus topoisomerase 1 cleave the sequence
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Time course of DNA relaxation. A. 50 ng of ECTOP
(lanes 1-10) and MtTOP (lanes | 1-20) was utilized in a relax-
ation assay as described in the "materials and methods" sec-
tion over time course of 0, 10, 20, 30, 45, 60, 75, 90, 120,
180 sec respectively for each enzyme. B. Quantitation of the
relaxation time course. The percent relaxation values
reported are averages of at least three independent experi-
ments. Error bars denote the standard error of mean.

CXXXY ({ represents the cleavage site) more preferentially
than others [21]. Archeal and bacterial reverse gyrases,
which are type IA topoisomerases, also have limited
sequence requirements with only the preference of a cyto-
sine or requirement of at least a pyrimidine at the -4 posi-
tion of the cleavage site [22-24]|. Previous studies
elucidating the sequence specificity of topoisomerase I

A EcTOP
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MtTOP

Figure 5

Effect of Mg2* ion concentration on DNA relaxation.
Effect of different concentrations of Mg2* ion concentration
ranging from 0-20 mM in DNA relaxation assays containing
(A) high level, | enzyme unit corresponding to 100 ng of
EcTOP and 500 ng of MtTOP; or (B) low level (50 ng) of
EcTOP or MtTOP. C: control with no enzyme.
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from M. smegmatis reported a strong topoisomerase I site
(STS), wherein the enzyme recognizes and cleaves the
sequence CG/TCTNT [25,26]. We utilized different single-
stranded 5'-32P labeled DNA substrates ranging from
~200-550 bases in length generated from either an E. coli
plasmid or M. tuberculosis genomic DNA to characterize
the MtTOP preferred cleavage sites. Results indicate that
the DNA cleavage selectivity of MtTOP is very similar to
that of ECTOP (Figure 6A, Table 1). The two enzymes
share many cleavage sites on DNA derived either from E.
coli or M. tuberculosis, but some cleavage sites were pre-
ferred by only one of these two enzymes (Figure 6B, Table
1). All of the cleavage sites for both enzymes were found
to have a cytosine at the -4 position (CXXX{) as previ-
ously shown for many bacterial topoisomerase I enzymes
[21,27]. There was no specific cleavage sequence recogni-
tion for MtTOP as reported for M. smegmatis topoisomer-
asel.

Discussion

Tuberculosis (TB) is the second leading cause of adult
deaths due to infectious diseases world-wide, second only
to HIV. The surge in multi-drug resistant M. tuberculosis
makes it crucial to identify novel targets for development
of new TB treatment. M. tuberculosis topoisomerase I could
be one such novel target since there is only one type 1A
topoisomerase found in M. tuberculosis. A recent genome
wide transposon mutagenesis experiment has postulated
and categorised M. tuberculosis topA gene as essential [28].
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Figure 6

Mapping cleavage sites on single-stranded DNA sub-
strate. A. Single-stranded DNA substrate Mtop (216 bases)
amplified from topA gene of M. tuberculosis was utilized to
map cleavage sites of ECTOP and MtTOP. Lanes |—4: cleav-
age reactions containing 400, 300, 200, 100 ng of EcTOP
respectively. Similarly lanes 5-8 contain 400, 300, 200, 100 ng
of MtTOP respectively. B. Single-stranded DNA substrate
PBAD (556 bases) amplified from pBAD/thio plasmid was uti-
lized to map cleavage sites of ECTOP and MtTOP. Lanes 1-2:
cleavage reactions containing 400, 300 ng of ECTOP respec-
tively. Similarly lanes 3—4 contain 400, 300 ng of MtTOP
respectively. Lanes A, G, C, T containing the sequencing
reactions with the corresponding nucleotide termination
mixes were electrophoresed along with ECTOP and MtTOP
cleavage reactions to determine the cleavage sites.
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Table I: List of mapped DNA cleavage sites
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Cleaved sequences?
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Sequences cleaved by EcTOP alone
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aSequences are numbered from -6 to 6 (5' to 3'). Topoisomerase | mediated cleavage occurs between -1 and |.
b Among sequences cleaved by both ECTOP and MtTOP, sequences showing at least one-fold higher cleavage intensity towards EcTOP or MtTOP
than the other enzyme are grouped as ECTOP or MtTOP preferred sequences respectively

It is also likely to be essential because every bacterium has
at least one type IA topoisomerase activity. MtTOP is
therefore an attractive target for drugs which would inter-
fere with its relaxation activity (catalytic inhibitors).
Moreover, besides inhibiting the overall relaxation activ-
ity of MtTOP, a more potent bactericidal effect could be
achieved by drugs (catalytic poisons) that enhance the
accumulation of covalent complexes on DNA, similar to
the bactericidal mechanism of fluoroquinolones on type
IIA bacterial topoisomerases. To aide such drug develop-
ment efforts, it is important to have MtTOP protein in
high purity and quantity. Here we report that by utilizing
the E. coli Arctic express RP(DE3) strain, we took advan-

tage of the higher GC rich codon usage efficiency and low
temperature chaperone in this strain to obtain soluble
MtTOP in high yield (12 mg from 7 L of bacterial culture).
This enables future development of high through-put
assays for inhibitors targeting MtTOP.

The DNA cleavage activity of MtTOP has not been charac-
terized previously and there is a also a need for more
detailed analysis of its DNA relaxation activity than in the
early study of the enzyme [12]. Careful comparison with
E. coli topoisomerase I (ECTOP) showed that the two
enzymes had similar efficiency initially in relaxing the
negatively supercoiled plasmid DNA isolated from E. coli.
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However, as the substrate plasmid DNA became partially
relaxed, MtTOP was slower than EcTOP in removing the
residual negative supercoils. This could be due to the dif-
ferent C-terminal domain found in the enzymes. The C-
terminal domain found in ECTOP has been proposed to
be important for substrate binding and coordination of
strand passage during the relaxation cycle [29,30]. The C-
terminal domain of MtTOP has no homology to the C-ter-
minal domain in EcTOP, so it may function differently
during the catalytic cycle. The N-terminal two-thirds, the
transesterification domains of EcTOP and MtTOP have
high degree of homology (41.9% identical).

Analysis of cleavage sites on both E. coli and M. tuberculosis
derived DNA substrate showed that the cleavage site pref-
erences are quite similar with a C in the -4 position as have
been observed for several bacterial topoisomerase I as well
as archeal and bacterial reverse gyrase enzymes. It is some-
what surprising that the cleavage site preference of MtTOP
is not the same as that reported for M. smegmatis topoi-
somerase I (CG/TCTYT). It is possible that this is due to
the different experimental protocols used in analysis of
the cleavage sites [25,26]. Besides M. smegmatis topoi-
somerase I, there are other examples of type IA topoi-
somerases that have cleavage site preferences different
from that of ECTOP. These include CTTV for E. coli topoi-
somerase I1I [31], CANNNY for human topoisomerase III
[32], ANNY for yeast topoisomerase III [33]. It remains
unclear which part of the type IA enzyme structure deter-
mines the cleavage site selectivity. The specific sequence
information for DNA cleavage by MtTOP should be useful
in design of oligonucleotide substrates for DNA cleavage
assays.

Conclusion

A new procedure for expression and purification of
recombinant MtTOP protein in high yield has been
described. The enzyme is as efficient as ECTOP in initial
removal of negative supercoils from plasmid DNA, but is
less efficient than ECTOP in removing the remaining neg-
ative supercoils. The preferred DNA cleavage sites of
MTTOP have limited sequence specificity but contain a C
nucleotide in the -4 position, similar to most bacterial
topoisomerase I and archeal reverse gyrase cleavage sites
characterized previously.

Methods

MtTOP expression and purification

MtTOP was expressed from a recombinant plasmid pLIC-
MTOP in E.coli Arctic express (DE3)RP strain (Stratagene).
MtTOP coding sequence was amplified from the genomic
DNA of M. tuberculosis H37RV strain with suitable primers
(LIC-Mtop5'-TACTTCCAATCCAATGCAGCTGACCCGA A
AACG and LIC-Mtop3'-TTATCCACTTCCAATGTTATT-
AGTCGCGCTTGGCTGC) using PfuUltra II Fusion HS

http://www.biomedcentral.com/1471-2091/10/18

DNA polymerase (Stratagene) and cloned into a vector
pLIC-HK [34] through a ligation independent cloning
procedure [35]. Cloning of MtTOP coding sequence into
this vector containing a T7 promoter allowed T7 RNA
polymerase dependent expression of MtTOP along with a
tobacco etch virus (TEV) protease-cleavable N-terminal
hexahistidine tag [34]. The resulting pLIC-MTOP plasmid,
capable of expressing recombinant MtTOP was first iso-
lated in E. coli NEB Turbo competent cells (New England
Biolabs) and then transformed into Arctic express
(DE3)RP cells after sequence confirmation. Expression of
M(TOP in transformed Arctic express (DE3)RP cells was
induced by 1 mM IPTG at 12°C according to the manufac-
turer's (Stratagene) protocol. After 24 h of induction, the
cells were collected and subjected to freeze-thaw lysis [15]
in lysis buffer (50 mM NaH,PO,, 300 mM NaCl, 10 mM
imidazole, 1 mg/ml Lysozyme, pH 8.0). The recombinant
protein in the soluble lysate was allowed to bind to Ni-
NTA agarose (Qiagen) and packed into a column. After
washing the column overnight with wash buffer (50 mM
NaH,PO,, 300 mM NaCl, 20 mM imidazole, pH 8.0), the
topoisomerase protein was eluted with an elution buffer
(50 mM NaH,PO,, 300 mM NaCl, 250 mM Imidazole,
pH 8.0) containing higher concentrations of imidazole.
Eluted MtTOP was cleaved with TEV protease to remove
the N-terminal hexa-histidine tag and purified by passing
through a single-stranded DNA cellulose column as
described [15].

DNA Relaxation Activity assays

To assay for one unit of relaxation activity, ECTOP [16]
and MtTOP enzymes of the same concentrations were
diluted serially, ranging from 500-1 ng and assayed for
DNA relaxation activity in a standard reaction volume of
20 pl with 10 mM Tris-HCI (pH 8.0), 50 mM Na(l, 0.1
mg/ml gelatin, 6 mM MgCl, and 0.5 pg of supercoiled
pBAD/thio plasmid DNA (purified by CsCl gradient cen-
trifugation). After incubation at 37°C for 30 min, the
reactions were stopped by adding 5 ul of 50 mM EDTA,
50% glycerol and 0.5%(v/v) bromophenol blue. The
DNA was electrophoresed in a 1.0% (w/v) agarose gel
with TAE buffer (40 mM Tris-acetate, pH 8.1, 2 mM
EDTA). The gel was stained with ethidium bromide and
photographed over UV light. One unit of enzyme was
defined as the least quantity of the enzyme required for
complete relaxation of negatively supercoiled DNA under
the given reaction conditions.

Mg?+dependence of ECTOP and MtTOP to relax negatively
supercoiled DNA was compared with either 50 ng or one
unit of enzyme (100 ng of ECTOP, 500 ng of MtTOP)
under varying concentrations of MgCl, ranging from 0-20
mM over a time period of 30 min at 37°C with similar
reaction conditions as described above. Also, a low con-
centration (50 ng) of ECTOP and MtTOP under standard
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Table 2: Single stranded DNA substrates used
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Substrate Source Primers Substrate size (bases) %GC

PBAD pBAD/thio Left-ATGCCATAGCATTTTTATCG 556 47
Right-*GACCGGTACGCGTAGAATCG

MdnaK M. tuberculosis dnaK Left-*GAACCCGTTGTTCTTAGACGAG 317 62
Right-*GGGTAACATCAAGCAGCAGAAC

Mtop M. tuberculosis topA Left-*GTAGAAGTTGTTGAGCCAGT 216 6l

Right-TACTCGTCGATCATCAAGAC

* Primer 32P labeled at 5'end to analyze extended strand as cleavage substrate after denaturation of the PCR product. The left and right primers of

MdnaK were utilized in separate experiments.

conditions (6 mM MgCl,) as described earlier was used to
compare the ability of the respective enzymes to relax neg-
atively supercoiled DNA at various time points of 0, 10,
20, 30, 45, 60, 75, 90, 120 and 180 sec at 37°C.

Cleavage of Single-stranded DNA

To compare and map the cleavage sites of ECTOP and
MtTOP, single stranded DNA substrates were generated
first by PCR (Table 2), followed by strand denaturation.
Each of these substrates were radio-labeled at the 5' end by
having one of the corresponding forward or reverse prim-
ers labeled with [y-32P]ATP in the presence of T4 polynu-
cleotide kinase prior to the PCR. The PCR products were
purified using the DNA Clean and Concentrator Kit
(Zymos) and eluted in TE buffer (10 mM Tris-HCl, pH
8.0, 1 mM EDTA). Prior to the addition of topoisomerase
in the cleavage assay, the DNA substrate was denatured to
single strands by heating at 95°C for 5 min and rapidly
cooled on ice. After incubation with the topoisomerase at
37°C for 10 min, trapping of the covalent enzyme-DNA
complex and cleaved DNA was achieved by the addition
of 0.1 M NaOH. After neutralization, the DNA was elec-
trophoresed in a 6% polyacrylamide sequencing gel fol-
lowed by autoradiography of the dried gel to visualize the
5'-end-labeled DNA cleavage products. DNA sequencing
reaction products were generated with the same 5' end
labeled primer corresponding to that of the substrate used
in the cleavage assay and by following the cycle sequenc-
ing procedures according to the manufacturer's instruc-
tions (SequiTherm DNA sequencing Kit, Epicentre). The
sequencing reaction products were electrophoresed next
to lanes containing cleavage products to identify the cleav-
age sites.
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