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Abstract
Background: Hundreds of extracellular proteins polymerise into filaments and matrices by using
zona pellucida (ZP) domains. ZP domain proteins perform highly diverse functions, ranging from
structural to receptorial, and mutations in their genes are responsible for a number of severe
human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that
share sequence homology with the N-terminal half of the ZP domain (ZP-N), but not with its C-
terminal half (ZP-C). The functional significance of this partial conservation is unknown.

Results: By exploiting a highly engineered bacterial strain, we expressed in soluble form the
PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein.
Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion
protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is
correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into
filaments.

Conclusion: These findings provide a function for PLAC1-like proteins and, by showing that ZP-
N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain
and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly
of ZP domain protein complexes.

Background
The ZP domain is a sequence of ~260 amino acids that
drives polymerisation of a large number of essential
secreted proteins from multicellular eukaryotes [1-3]. It
has been suggested that the domain, which includes 8
highly conserved Cys residues, consists of two sub-
domains [4-6]. The N-terminal subdomain (ZP-N) is

thought to contain conserved Cys 1 to 4, disulfide-bonded
with invariant 1–4, 2–3 connectivity. On the other hand,
conserved Cys 5 to 8, located within the C-terminal sub-
domain (ZP-C), apparently adopt two alternative connec-
tivities in different ZP domain proteins [3,6-10]. In type I
ZP domain proteins with 8 Cys within the ZP domain,
such as ZP3, the ZP-C connectivity is 5–7, 6–8; in type II
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ZP domain proteins with 10 Cys within the ZP domain,
like the other egg coat subunits ZP1 and ZP2, it is 5–6, 7-
a, b-8 (a and b being the two additional Cys, compared to
type I proteins). Interestingly, type I (ZP3-like) ZP domain
proteins appear to polymerise into filaments only in the
presence of type II (ZP1/ZP2-like) ZP domain proteins,
whereas the latter can also form homopolymers.

Recently, placenta protein PLAC1 was described that bears
significant homology to the N-terminal subdomain of
sperm receptor ZP3 [11,12]. Based on this similarity, as
well as on the observation that deletion of the X chromo-
some region harboring the PLAC1 gene causes fetal
growth restriction and abnormal placenta development
[13,14], it was proposed that PLAC1 might be required for
interaction between the trophoblast and other placental
or maternal tissues [11,15]. Five additional proteins,
mammalian Oosp1-3 and Drosophila Papillote and
CG16798, were subsequently identified that also share
homology with ZP-N, but not ZP-C [16-19]. In view of the
higher structural conservation of ZP-N, these reports raise
questions about the relative contribution of the two sub-

domains to ZP domain function. Are PLAC1-like proteins
also able to polymerise, or do ZP-N sequences carry out a
different role than complete ZP domains?

Results
Identification of additional protein sequences containing 
only ZP-N
To investigate whether other proteins exist that contain
only the N-terminal half of the ZP domain, we generated
a profile hidden Markov model (HMM) of ZP-N to scan
genomic and non-redundant sequence databases. This
analysis identified three additional putative ZP-N-con-
taining proteins, whose genes appear to be expressed
(Table 1 and Fig. 1, underlined sequences). On the other
hand, no proteins containing only ZP-C were found in a
parallel search with a corresponding HMM profile. These
observations suggest that, unlike ZP-N, ZP-C can be found
exclusively within the context of a complete ZP domain.

Table 1: ZP-N proteins

Species Protein name 
(accession 
number)

Amino 
acid 

number

HMM search* Signal peptide† Expression evidence Reference(s) Putative homolog(s)

C. elegans F55A4.10 
(AAL06028.2)

633 3.7e-13; 62.3; 
31–126 (4)

0.999 (1–18); 
11.327 (1–18)

ESTs (AU201804, 
CB402430), microarray 

(WormBase 
WBGene00018861)

[56] -

D. melanogaster Papillote/CG2467 
(NP_727583.1)

963 4e-15; 69.0; 
80–167 (4)

0.999 (1–32); 
11.890 (1–32)

mRNA (AY862156), 
immunohisto-chemistry and 

Western blot [16], in situ 
hybridization (BDGP 

CG2467; [17])

[16, 17] EAL32136.1 (D. pseudoobscura)

D. melanogaster CG16798 
(NP_610030.1)

561 9.9e-12; 57.7; 
255–343 (4)

1.000 (1–28); 
13.662 (1–28)

mRNA (AY122225), in situ 
hybridization (BDGP 

CG16798; [17])

[17] SNAP00000007590 (A. 
gambiae)

D. melanogaster CG10005 
(NP_650137.3)

231 4.3e-17; 75.5; 
59–151 (4)

0.999 (1–24); 
6.625 (1–19)

mRNA (AY113516), 
microarray (BDGP 

CG10005)

- EAL28621.1 (D. pseudoobscura), 
SNAP00000007531 (A. 

gambiae)
C. carpio ZP1§(CAA96573.1) 555 8.4e-29; 114.4; 

381–482 (4)
0.999 (1–19); 
6.833 (1–19)

MRNA (Z72492), Northern 
blot, in situ hydridization, 
immuno-histochemistry, 

Western blot [41]

[41] -

M. musculus Oosp1 
(NP_579931.1)

202 3.2e-07; 42.7; 
30–119 (4)

1.000 (1–21); 
8.733 (1–21)

mRNA (AF420487), 
Northern blot, in situ 

hydridization [18]

[18, 19] ENSRNOP00000028498 (R. 
norvegicus)

M. musculus LOC225923/Oosp3 
(NP_001028455.1)

194 1.2; 19.9; 28–
117 (4)

1.000 (1–21); 
8.275 (1–21)

mRNA (NM_001033283), 
RT-PCR, in situ 

hybridization [19]

[19] -

H. sapiens PLAC1 
(NP_068568.1)

212 8.7e-11; 54.6; 
29–119 (4)

0.999 (1–22); 
7.539 (1–23)

MRNA (BC022335), 
Northern blot, in situ 

hydridizationm [11, 12, 15]

[11, 12, 15] ENSPTRP00000038397 (P. 
troglodytes), 

ENSBTAP00000008260 (B. 
taurus), ENSCAFP00000027834 
(C. familiaris), NP_001020065 
(R. norvegicus), NP_062411.1 

(M. musculus)
H. sapiens LOC219990/Oosp2 

(NP_776162.2)
158 0.0067; 28.4; 

25–116 (4)
0.997 (1–17); 
10.702 (1–17)

MRNA (NM_173801) [19, 57] ENSPTRP00000006381 (P. 
troglodytes) NP_001032723.1 

(M. musculus)

* E-value; bit score; matched aa (number of Cys). Calibrated expectation values are relative to the NCBI non-redundant protein database (2308679 
sequences at the time of the search).
†SignalP probability (aa); SigCleave score (aa).
§This protein is referred to as ZP2 in ref. 41. However, because it contains a trefoil domain immediately before the ZP domain, it should be 
regarded as a member of the ZP1 family.
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Expression, purification and characterisation of 
recombinant ZP-N
To establish whether ZP-N is able to fold independently
and investigate its biological role, we over-produced in
recombinant form the PLAC1-homology region of the ZP
domain of mouse ZP3. The 102-amino acid ZP-N frag-
ment was expressed as an affinity sandwich [20], with E.
coli maltose binding protein (MBP) fused to its N-termi-
nus via a short linker and a polyhistidine tag (6his) fused
to its C-terminus (Fig. 2A). MBP was chosen as a fusion
partner since it is strictly monomeric in the presence of
maltose [21,22] and has either no or minimal interaction
with the proteins to which it is fused, so that the stoichi-
ometry of MBP fusion proteins is entirely determined by
the properties of the non-MBP moieties [22,23].

Using a bacterial strain that facilitates formation of
disulfides by carrying trxB and gor mutations [24] and co-
expressing modified versions of disulfide isomerase [24]
and thioredoxin [25], significant amounts of MBP-ZP-N-
6his were obtained that could be purified to homogeneity
with a two-step affinity method (Fig. 2B, lane 2).

Although the fusion protein was soluble, as judged by
ultracentrifugation at 100,000 g, it eluted in the void vol-
ume of 300 kDa molecular weight (Mr) cut-off size-exclu-
sion columns, suggesting the presence of multimers.
Analysis in the presence of ethylenedinitrilotetraacetic
acid (EDTA) yielded identical elution profiles, excluding
the possibility that trace amounts of Ni2+ ions could have
leaked from the immobilised metal ion affinity chroma-
tography (IMAC) column used during purification and
caused non-specific protein aggregation by cross-linking
multiple histidine tags.

Western blot analysis of purified MBP-ZP-N-6his revealed
a band corresponding to monomeric protein and, in addi-
tion, a ladder of bands corresponding to dimers, tetramers
etc. (i.e. 2n × Mr, with n = 1, 2, ...) (Fig. 2B). Although
these multimers were much less abundant under reducing
conditions, several lines of evidence suggest that this was
due to more extensive denaturation of the ZP domain
moiety of MBP-ZP-N-6his, rather than to the presence of
spurious intermolecular disulfides. First, unlike the situa-
tion reported for other proteins [26], no bands were
observed for trimeric, pentameric, etc. (i.e. (2n+1) × Mr)
forms of MBP-ZP-N-6his (Fig. 2B). Second, as seen in the
case of bands corresponding to the monomeric protein,
dimeric and tetrameric MBP-ZP-N-6his also migrated dif-
ferently under reducing and non-reducing conditions
(Fig. 2B, compare lanes 2 and 3, and lanes 5 and 6, 7).
Third, when samples were analysed by gel filtration under
reducing conditions, most of the protein was still eluted
in the void volume. Fourth, mass spectrometric analysis of
proteolytic digests of dimeric MBP-ZP-N-6his did not
reveal additional peaks compared to monomeric protein,
whose spectra were consistent with native, intramolecular
disulfides (ZP3 Cys 1 (aa 46)-Cys 4 (aa 139) and Cys 2 (aa
78)-Cys 3 (aa 98)) (Fig. 2C, D) [3,6-10].

Structural analysis of recombinant ZP-N
Electron microscopy (EM) of negatively stained MBP-ZP-
N-6his revealed that the protein assembles into long fila-
ments (Fig. 3A) whose features are reminiscent of the hel-
ical structure described for full-length ZP domain proteins
(Fig. 3B, C) [2,3]. Moreover, a pattern was observed in
immunolocalisation studies which suggests that dimeric
MBP-ZP-N-6his is present as repeating units within fila-
ments (Fig. 3D, E).

Architecture of ZP-N-containing proteinsFigure 1
Architecture of ZP-N-containing proteins. The primary 
sequence of each protein is shown as a grey bar, drawn to 
scale and with the amino and carboxy termini marked. Signal 
peptides (as identified by SignalP) and transmembrane 
domains (as predicted by SMART) are represented by red 
and blue rectangles, respectively; ZP-N sequences are shown 
as pink rectangles and a trefoil (P) domain is depicted as a 
yellow rhombus. Proteins are in the same order as in Table 1 
and identified by their accession number.

N CNP_727583.1 ZP-N

N CAAL06028.2 ZP-N

N CNP_610030.1 ZP-N

N CNP_650137.3 ZP-N

N CNP_579931.1 ZP-N

N CNP_001028455.1 ZP-N

N CNP_068568.1 ZP-N

N CNP_776162.2 ZP-N

N CCAA96573.1 P

100 aa
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Discussion
Our results indicate that E. coli-expressed MBP-ZP-N-6his
is correctly folded and, because MBP is monomeric and
does not influence the multimerisation state of passenger
proteins [21-23], that the fusion protein assembles into
filaments through its ZP-N sequence. The solubility of
purified MBP-ZP-N-6his filaments can be explained by
the well documented solubilisation properties of MBP
[27,28]. Furthermore, the periodicity observed by both
SDS-PAGE (Fig. 2B) and EM (Fig. 3E) suggests that mul-
timerisation of MBP-ZP-N-6his involves formation of
non-covalently linked homodimers. Consistent with
these conclusions, a large portion of ZP-C sequence is
apparently missing from polymeric Tamm-Horsfall pro-
tein due to proteolytic processing between conserved Cys
6 and 7 of the ZP domain [29]. Moreover, homodimerisa-

tion of full-length ZP domain proteins, including mam-
malian ZP3, has been described [3,9,30-33].

By demonstrating that ZP-N is a conserved, autono-
mously folding unit that is biologically active, we suggest
that this sequence should be considered a domain on its
own and that the current definition of ZP domain should
be revised. PLAC1-like proteins are able to polymerise and
this explains why the majority of ZP domain mutations
causing disease in humans, such as those in α-tectorin and
Tamm-Horsfall protein, are clustered within the first half
of the domain [3,34-36]. The importance of ZP-N is also
underscored by the observation that ZP domain protein
endoglin contains a canonical ZP-N sequence whereas
only 2 Cys are conserved within its ZP-C subdomain ([37-
40]; accession number AAT84715), and that some fish

Characterisation of MBP-ZP-N-6hisFigure 2
Characterisation of MBP-ZP-N-6his. (A) Schematic representation of MBP-ZP-N-6his fusion protein. (B) Multimerisation 
of MBP-ZP-N-6his. Purified protein, separated by SDS-PAGE under both reducing (R, lanes 2, 4, 6 and 7) and non-reducing 
(NR, lanes 3 and 5) conditions, was visualised by Coomassie staining (lanes 2, 3) and by immunoblot analysis with monoclonal 
anti-6his (lanes 4–7). Lane 1, Mr markers; lanes 6 and 7, progressively long exposures of lane 4. The position of bands corre-
sponding to monomeric, dimeric and tetrameric MBP-ZP-N-6his is indicated. (C, D) Disulfide linkages of monomeric MBP-ZP-
N-6his. The fusion protein contains 4 Cys residues, all within the ZP-N sequence. Native 1–4, 2–3 disulfides were assigned on 
the basis of MALDI-TOF-MS measurements of trypsin-digested MBP-ZP-N-6his, performed under non-reducing (NR, C) and 
reducing (R, D) conditions (Methods). MBP and ZP3 amino acid numbers refer to database entries 1HSJ_A and P10761, 
respectively. Peaks represent average mass/charge ratio (m/z). Disulfide-bonded and free Cys-residue containing peptides are 
marked by blue and red circles, respectively; LEH6 C-terminal tag peptide is marked by a black circle; peaks with intensity 
below 5% are indicated by dashed circles.
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ZP1 protein isoforms completely lack ZP-C ([41]; Table
1). The availability of a recombinant ZP-N construct able
to assemble into filaments that can be easily purified will
be instrumental in understanding the effects of these
mutations at the molecular level. Our results also raise
important questions about the structure of ZP domain fil-
aments and the function of ZP-C. Because the latter is only
found as part of a complete ZP domain and can adopt dif-
ferent disulfide connectivities [3,6-9], it may play a crucial
role in regulating the specificity of ZP-N to determine
whether or not a given ZP domain protein can homo- or
heteropolymerise. Indeed, presence of ZP-C, as well as of
hydrophobic patches that regulate polymerisation of ZP
domain proteins [4], within full-length ZP3 could explain
why – unlike its ZP-N fragment – this is apparently not
able to assemble into filaments in the absence of a type II
ZP domain counterpart [9,42,43]. Alternatively, it is pos-
sible that full-length ZP3 and ZP2 are in principle also
able to homopolymerise, but the resulting filaments are
not stable unless they interact with each other [10].

Conclusion
Recent studies led to the hypothesis that the ZP domain, a
module responsible for the polymerisation of a large
number of extracellular proteins, consists of two sub-
domains. In this work, we identified protein sequences

sharing homology exclusively with the N-terminal half of
the ZP domain (ZP-N), but did not find sequences con-
taining only its C-terminal half (ZP-C). We then showed
that a recombinant protein corresponding to the ZP-N
region of mammalian sperm receptor ZP3 is able to fold
independently from its ZP-C counterpart, and that it
assembles into filaments which appear to consist of
dimeric subunits. Our results argue that ZP-N should be
considered a domain of its own, suggest a function for
proteins containing only ZP-N, are consistent with the
higher structural conservation of the N-terminal part of
the ZP domain, and provide an explanation for the clus-
tering of mutations within ZP-N. Finally, we propose that
ZP-C might function by regulating ZP-N-mediated polym-
erisation of proteins containing a full ZP domain.

Methods
Sequence analysis
Calibrated profile HMMs for ZP-N and ZP-C were gener-
ated with HMMER 2.3.2 [44], using sequence databases
derived from the Pfam [45] ZP domain protein family
(PF00100) alignment. Sequences that were not complete
within the amino acid range of interest were removed
prior to HMM building. In the case of ZP-N, sequences
that did not contain all conserved Cys 1–4 were also
excluded, whereas conservation of Cys 5–8 was not explic-
itly imposed for inclusion of the more divergent ZP-C
sequences. Profile HMMs were used to scan Ensembl [46]
genome databases and the NCBI Entrez non-redundant
protein database (~3800000 total sequences), and match-
ing sequences were automatically extracted and submitted
to BLAST [47], CD-SEARCH [48] and SMART [49]. Entries
that were either partial (based on the alignment and
annotation of matching BLAST sequences) or contained a
complete ZP domain (as indicated by CD-SEARCH and/
or SMART, as well as by their presence within both ZP-N
and ZP-C matches) were filtered out, and remaining
entries (~800 sequences) were individually analysed.
Final acceptance criteria were high significance and com-
pleteness of the matches, as indicated by HMM E-values <
0.1 and extent of the alignment to HMM profiles (together
with presence of conserved Cys 1–4 (ZP-N) or Cys 5–8
(ZP-C)), respectively. In addition, since both proteins
with a complete ZP domain and PLAC1-like proteins are
secreted, matches were accepted only if they also included
a putative signal peptide (as predicted by SignalP [50] and
EMBOSS SigCleave [51,52]) which did not overlap with
ZP domain sequence (as identified by CD-SEARCH and/
or SMART). This analysis yielded 8 unique sequences con-
taining only ZP-N, and no sequences containing only ZP-
C (Table 1). An additional mouse sequence with E-value
= 1.2 (protein LOC225923; accession number
NP_001028455.1) was added to the ZP-N protein list on
the basis of its significant similarity to proteins Oosp1 and
LOC219990. BLAST and BLAT [53] searches of the mouse

MBP-ZP-N-6his assembles into filamentsFigure 3
MBP-ZP-N-6his assembles into filaments. (A-C) Elec-
tron micrographs showing overview (A) and details (B, C) of 
negatively stained samples. (D, E) Immunogold localisation 
using monoclonal anti-MBP. Arrows mark closely spaced 
pairs of beads. Bars represent 0.1 µm.

A B C

D E
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genome indicated that the genes encoding proteins
Oosp1 and LOC225923, as well as the gene for a third
protein (LOC225922; accession number
NP_001032723.1) homologous to human LOC219990,
are closely located on chromosome 19. The same cluster
was independently identified in a recent study, in which
LOC225922 and LOC225923 were renamed Oosp2 and
Oosp3, respectively [19].

DNA constructs
A PCR fragment encoding aa 42–143 of mouse ZP3 pro-
tein was cloned between the EcoR1 and Xho1 sites of vec-
tor pMBP4c, a derivative of plasmid pMBPL-/gp21(338–
425) [54] that expresses a C-terminally histidine-tagged
modified version of MBP under the control of T7 pro-
moter/lac operator. A second vector, pLJDIS1, was gener-
ated from plasmids pBAD∆SSdsbC [24] and pFÅ5 [25] to
allow co-expression of a version of disulfide isomerase
lacking a signal sequence (∆SSdsbC) and a glutaredoxin-
like thioredoxin variant with higher redox potential
(TrxA(G33P, P34Y)), under the control of the arabinose
promoter. All constructs were verified by DNA sequenc-
ing.

Protein expression and purification
For over-expression of MBP-ZP-N-6his, pMBP4c-
mZP3(42–143) and pLJDIS1 were co-transformed into E.
coli Origami B (DE3) (Novagen), carrying trxB and gor
mutations. Although the trxB gor background was crucial
to get partially soluble MBP-ZP-N-6his (the protein was
completely insoluble in BL21 (DE3)), no significant
improvement in solubility was observed upon co-expres-
sion of ∆SSdsbC or TrxA(G33P, P34Y). Nevertheless, we
decided to still co-express both proteins, because they
could be qualitatively important, as they were shown to
significantly increase the activity of recombinant
disulfide-rich proteins expressed in the cytoplasm of E.
coli trxB gor strains [24]. Transformed cells were grown at
37°C in M9 medium containing 0.4% glucose, 15 µg/ml
kanamycin, 12.5 µg/ml tetracyclin, 25 µg/ml chloram-
phenicol and 100 µg/ml carbenicillin. After reaching an
optical density (OD595 nm) of 0.5, they were shifted to
24°C for 30 min and pre-induced with 0.2% arabinose. 1
hr 30 min later, cells were induced with 0.1 mM isopro-
pyl-β-D-thiogalactopyranoside and grown for an addi-
tional 25 hr at 24°C (final OD595 nm~0.75). Bacteria were
harvested by centrifugation and lysed with CelLytic B
(Sigma). Soluble MBP-ZP-N-6his was purified by affinity
chromatography, using Ni2+-charged HiTrap Chelating
HP (Amersham Biosciences) and amylose resin (New
England Biolabs) columns, followed by step-gradient ion
exchange chromatography, using a Mono Q column
(Amersham Biosciences). After dialysis against buffer F
(10 mM Na-HEPES pH 8.0, 100 mM NaCl, 1 mM maltose,

1 mM NaN3), the purified protein was concentrated to 16
mg/ml.

Western blotting
Immunoblot experiments were carried out by using BSA-
free Penta•His monoclonal primary antibody (1:1000;
QIAGEN) and goat anti-mouse horseradish peroxidase
(HRP)-conjugated IgG (1:3000; ICN/Cappel), according
to the manufacturers protocol. Chemiluminescent detec-
tion reactions were performed with Western Lightning
Chemiluminescence Reagent Plus (Perkin Elmer).

Mass spectrometry
After SDS-PAGE under non-reducing conditions (with
~20 µg MBP-ZP-N-6his/lane), gel spots were excised and
alkylated with 30 mM iodoacetamide in 100 mM Tris-HCl
pH 6.8 for 30 min at room temperature. The liquid was
removed and samples were prepared for digestion by
washing twice with 100 ml 50 mM Tris-HCl pH 6.8/30%
acetonitrile (ACN) for 20 min with shaking, then with
100% ACN for 1–2 min. After removing the washes, gel
pieces were dried for 30 min in a Speed-Vac concentrator.
Individual gel pieces were digested by adding 80 µg mod-
ified trypsin or chymotrypsin (sequencing grade, Roche
Molecular Biochemicals) in 13–15 ml 25 mM Tris-HCl
pH 6.8 and leaving overnight at room temperature. Pep-
tides were extracted with 2 × 50 ml 50% ACN/2% trifluor-
oacetic acid (TFA) and the combined extracts were divided
in half, then dried. One half of the digest was dissolved in
matrix-assisted laser desorption/ionisation time-of-flight
mass spectrometry (MALDI-TOF-MS) matrix for immedi-
ate mass spectrometric analysis, and the other half was
reduced by adding 20 mM dithiothreitol (DTT) in 100
mM Tris-HCl pH 8.5. After 30 min at 50°C, the reduced
digest was cooled to room temperature and desalted with
a C18 ZipTip (Millipore), using 50% ACN to elute the
peptides. The eluate was dried and dissolved in MALDI-
TOF-MS matrix for analysis. Matrix solution was prepared
by making a 10 mg/ml solution of 4-hydroxy-α-cyanocin-
namic acid in 50% ACN/0.1% TFA. The dried digest was
dissolved in 3 ml matrix solution and 0.7 ml was spotted
onto the sample plate. If the sample was not previously
desalted, the dried spot was washed twice with water.
MALDI mass spectrometric analysis was performed on the
digest using a Voyager DE-Pro mass spectrometer
(Applied Biosystems) in the linear mode. Spectra were
analysed both manually and with MS-Screener [55] and
MS-Compare (LJ, unpublished). Since all samples were
alkylated prior to digestion, unmodified free Cys-contain-
ing peptides identified under non-reducing conditions
(Fig. 2C) resulted from laser-induced breakage of
disulfides. Furthermore, it appeared that essentially all
Cys residues of purified MBP-ZP-N-6his were involved in
disulfides. Unlike the case of the Cys 2-Cys 3 disulfide
bridge (Fig. 2C), a peak corresponding to a linkage
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between peptides containing Cys 1 and Cys 4 could not be
identified under non-reducing conditions; however, exist-
ence of the latter bridge could be clearly inferred by
appearance (or marked increase in the intensity) of peaks
corresponding to peptides containing unmodified free
Cys 1 and Cys 4 upon reduction of the sample (compare
Fig. 2C and 2D). This was further supported by a corre-
sponding increase in the intensity of a peak corresponding
to the C-terminal tag, which closely follows Cys 4 in the
sequence of MBP-ZP-N-6his (Fig. 2C, D). MALDI-TOF-MS
analyses of chymotrypsin-digested monomeric protein as
well as trypsin-digested dimeric MBP-ZP-N-6his were also
consistent with intramolecular 1–4, 2–3 disulfides.

Size-exclusion chromatography
Gel filtration experiments were performed on both FPLC
and HPLC systems, using a HiPrep 16/60 Sephacryl S-300
HR column (~300 kDa Mr cut-off; Amersham Biosciences)
and a Bio-Sil SEC-250-5 column (~300 kDa Mr cut-off;
Bio-Rad), respectively. Running solutions were buffer F
(non-reducing conditions) or buffer F + 10 mM DTT
(reducing conditions). Additional runs were performed
by pre-incubating purified MBP-ZP-N-6his with 10 mM
EDTA pH 8.0 for 1 hr at 4°C, before analysis using 10 mM
Na-HEPES pH 8.0, 1 mM EDTA as running buffer.

Electron microscopy
For morphological observation, material was negatively
stained by applying a drop of solution (final concentra-
tion 1 mg/ml) directly onto a 300-mesh formvar-carbon
coated nickel grid (Electron Microscopy Sciences), which
was allowed to remain for approximately 30 seconds, after
which excess solution was removed. A drop of 1% aque-
ous uranyl acetate was then added onto the grid and
allowed to remain for an additional 30 seconds, after
which excess solution was removed and the grids allowed
to dry. For immunogold localisation, equal volumes of
protein (1 mg/ml) and anti-MBP monoclonal primary
antibody (1:300; New England Biolabs) diluted in Tris-
buffered saline-Tween-20 solution (TBS-T) were allowed
to incubate for two hours at room temperature. Goat anti-
mouse H&L(Fab2') 10 nm gold-conjugated secondary
antibody (1:30/TBS-T, EMS) was added directly to the
solution and allowed to incubate for two hours at room
temperature. A 300-mesh formvar-carbon coated nickel
grid was then immersed and allowed to remain for
approximately 30 seconds, after which it was removed
and excess solution was removed. Negative contrast stain-
ing followed the above-described method. Material was
imaged on a Jeol 1200EX electron microscope equipped
with an Advanced Imaging Technologies digital camera.
Images were imported into Photoshop CS2 (Adobe Sys-
tems Inc.) where they were sized and optimised for con-
trast and brightness.
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