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Abstract

Background: In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a
study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small
subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four
amino acids (Asp, His, Asn, GIn) at each of the 12 ligating positions because these amino acids are alternative
coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences.
We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1”
(H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted
for Cys.

Results: Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination
suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the
enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five

substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select
substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results
confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit,
indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme.

Conclusions: We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A.
macleodii "deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve
hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be
functional and also suggests a new limiting factor in the production of active enzyme.
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Background

The development of hydrogen as a biofuel is appealing
because unlike hydrocarbon-based biofuels, the produc-
tion of hydrogen involves very few chemical steps, and
thus may be more efficient. Ultimately, one goal is to
couple biohydrogen production to the photosynthetic
apparatus to directly and efficiently capture solar energy.
Hydrogen-producing redox enzymes tend to be highly
oxygen sensitive [1-3], and the first stage of photosyn-
thesis is the production of molecular oxygen. Using a
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[NiFe] hydrogenase with some degree of oxygen toler-
ance, we elected a strategy of improving the enzyme ac-
tivity by investigating alternative amino acid ligation of
hydrogenase FeS clusters [4].

The broad family of two-subunit [NiFe] hydrogenases,
including [NiFeSe] hydrogenases, have many non-cysteinyl
amino acid ligands for FeS clusters. An alignment of pre-
dicted [NiFe] hydrogenase amino acid sequences from se-
quenced genomes in the NCBI GenBank database revealed
several ‘unusual’ amino acids in positions normally con-
taining cysteine and known to ligate Fe-S clusters involved
in electron transport to the active site (Table 1). Previous
researchers have heterologously expressed a small subunit
containing unusual Fe-S ligations and have verified the
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Table 1 FeS cluster substitutions observed in sequence
databases

Species Accession Cluster, position Substitution
M. barkeri YP_305362 Proximal (4Fe4S)?, 1 Cys to Asp
G. metalloreducens  YP_006722286  Proximal (4Fe4S)?, 2 Cys to Asp
N. punctiforme YP_001864093 Proximal (4Fe4S), 2 Cys to Asn
N. punctiforme YP_001864093 Distal (4Fe4S), 1 His to GIn

N. punctiforme YP_001864093 Medial (3Fe4S), 2 Pro to Lys*
D. baculatum YP_003157302 Medial (4Fe4S), 2 Pro to Cys

Putative FeS cluster ligating residues deviating from the standard pattern seen
among two-subunit [NiFe]-hydrogenases. Each substitution is represented by
multiple members; only one representative example is listed. Question marks
indicate FeS cluster assignments that have not been confirmed. Asterisk (“*”)
indicates a substitution not investigated in this study. The final entry represents
[NiFeSe] hydrogenases, which do feature a cysteine in lieu of a proline.

presence of intact clusters of the expected 4Fe4S type in
spite of these unusual amino acids [5], adding confidence
that the amino acids predicted at these sites are not the re-
sult of sequencing errors. We sought to use our robust
Alteromonas macleodii heterologous expression system
[4,6-8] to conduct a preliminary examination broadly
surveying these and similar substitutions, both to find
a better performing enzyme and to launch interest in
better understanding FeS clusters.

Typically, experiments substituting Fe-S ligation sites sub-
stitute ligating cysteines with serines, which are the most
structurally homologous to cysteine [9-12], although histidi-
nyl ligations have also been substituted [13]. However, in na-
ture, serinyl FeS cluster ligation is, to date, unknown,
although there is at least one example of a threoninyl
FeS ligation [14]. In our study, we sought to substitute
these ligating cysteines to a panel of amino acid resi-
dues suspected to ligate FeS clusters in hydrogenases.
Therefore, we permuted all of the amino acids in the
set {Asp, His, Asn, Gln}, which are found in various
subclasses of two-subunit hydrogenase (Table 1), at
sites containing ligating cysteines. Although glutamic
acid and lysine are also found in ligating positions of
two-subunit [NiFe] hydrogenases, we chose to avoid
these residues. Glutamic acid was avoided because of
its paucity in hydrogenase alignments at conserved
cysteine positions, and its structural change relative to
cysteine. Lysine was not used because of its even more
exaggerated structural difference. Accommodating ei-
ther of these residues would likely require additional
second-sphere residue substitutions to adjust the struc-
ture of the hydrogenase.

We also surmised that residue substitutions may alter
the electronic landscape of the FeS cluster chain in hy-
drogenase to allow for improved electron flow. Follow-
ing the precepts of Marcus theory, an ideal electron
transfer chain for hydrogen production would feature a
modestly energetically downhill (increasing midpoint
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potential) series of FeS clusters proceeding from the
distal site and leading to the active site [15]. Instead,
most two-subunit hydrogenases feature a 3Fe4S, high
potential medial cluster [16,17]. Previous work has shown
a modest increase in hydrogen production upon convert-
ing this hydrogenase to a 4Fe4S cluster with a correspond-
ing lower midpoint potential, and although closer, the
midpoint potential is still not tuned to an optimal range
[17]. Although we do not yet have concrete proof that the
homologous substitution in the A. macleodii hydrogenase
results in a 4Fe4S cluster, nor do we have midpoint poten-
tial measurements, we do observe a marked increase in
hydrogen production for our first generation “G1l”
(H230C/P285C?) engineered hydrogenase in which the
medial FeS cluster Pro and the distal FeS cluster His were
each substituted for Cys [8]. Proceeding from this point,
we hoped our comprehensive substitution study could
serve as an exercise to screen for a further improved
enzyme.

In this work, we screened the activity of 48 ligation vari-
ants using a crude whole cell hydrogen evolution assay.
The whole cell assay revealed two interesting facts: First,
that all substitutions homologous to those observed in the
pan-hydrogenase family were tolerated enough to yield
measurably active enzyme. Secondly, cysteine-to-aspartic
acid substitutions as a class were generally well-tolerated
(with one exception). Aspartate-ligated FeS clusters have
been observed in the natural case of Pyrococcus ferre-
doxin; this non-canonical ligation results in a 4Fe4S clus-
ter with an aerobically labile Fe atom [18-20]. In the
case of the photosystem protein PsaC, artificial substi-
tution can result in the generation of a 3Fe4S cluster
in lieu of a 4Fe4S cluster [10,21], but one Cys-Asp substi-
tution resulted in a stable 4Fe4S cluster with a decreased
redox potential [22]. In our A. macleodii hydrogenase
substitution set, further examination of 8 aspartic
acid variants suggested that activity differences re-
sulted from enzyme misprocessing, observed as a lack
of small subunit N-terminal cleavage. Careful isolation of
the enzyme alone suggested that two of these aspartic
acid-substituted enzymes may be intrinsically more effi-
cient at hydrogen evolution than the G1 enzyme upon
which they are based.

Results and discussion

Hydrogenase screening assay

We constructed 48 variants of hydrogenase featuring
substitutions from the targeted set of four amino acids
in the background of our first generation “G1” (H230C/
P285C") engineered hydrogenase. The G1 strain has the
medial FeS cluster proline to cysteine substitution and the
distal FeS cluster histidine to cysteine substitution [8].
Thus, in the G1 starter strain, cysteine was present in all
12 coordinating positions, and each of the 48 variants
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substituted one of four amino acids (Asp, His, Asn, Gln)
at one of the 12 positions.

When these variants were tested in a crude whole cell
activity assay (Figure 1), several trends emerged. First,
aspartic acid was almost always the most tolerated sub-
stitution. In addition to the P285C substitution found in
[NiFeSe] hydrogenases, which is present in our chosen
background sequence, all substitutions homologous to
those found in known sequences were also functional
(C78D, C81D/N, H230Q). Finally, there appeared to be
“privileged” ligations (C78, C192, C264) wherein no sub-
stitutions or only the aspartic acid substitution resulted
in detectable activity, suggesting a higher level of sensi-
tivity to substitution at these positions.

Bacterial lysate hydrogen evolution activity assay
To confirm the qualitative validity of the whole cell
screening assay, we subjected the best-performing aspar-
tic acid substitutions and one asparagine substitution to
a bacterial lysate assay similar to that which we per-
formed in our initial development of the G1 enzyme [8].
Here the results qualitatively tracked the results observed
from the initial screening experimental set (Figure 2A).
Western blot analysis of the lysates (Figure 2B, C, D), sug-
gested that the enzyme yield roughly tracks small subunit
processing efficiency. The immature (~69 kDa) and ma-
ture (~67 kDa) large subunit bands appear roughly un-
changed. There are two small subunit bands, which we
believe correspond to immature upper band (~36 kDa
theoretical), and mature lower band (31 kDa theoretical),
corresponding to cleavage by the twin arginine translocon
(TAT) machinery in the sequence ATA/LGN (residues
52-57). This cleavage only occurs after the entire enzyme
is properly assembled and exported via the TAT system —
although in the case of the A. macleodii hydrogenase, the
hydrogenase likely returns to the cytoplasm [4].

Of these two small subunit bands, the immature frac-
tion appears to have little correlation with the activity,
but qualitatively, the mature fraction strongly correlates
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with the observed activities (Figure 2D). This could be
for various reasons, such as a kinetic barrier to loading
the FeS cluster preventing assembly, or a downstream
effect such as clearance of unstable enzyme variants by
proteolysis. These results encouraged us to conduct fur-
ther study on the “best of class” aspartic acid residues to
separate the enzyme intrinsic activity from these cell-
dependent extrinsic factors.

Doubly substituted enzyme assay

Using a pooled Gibson isothermal assembly strategy, we
generated a comprehensive library of double substitu-
tions (see Additional file 1: Table S1) drawing from a set
of distal and medial cluster substitutions (8 total con-
structs discovered from a pool of 16). This library also
contained a handful of unplanned, spontaneous triple
substitutions of unresolved assembly mechanism. No
multiply-substituted construct tested yielded detectable
activity, and based on our observations following western
blots of other constructs, we suspect that maturation of
the hydrogenase is too compromised in the multiple
substitutions.

Tandem purification activity assay

We subjected the G1 enzyme and the two best-performing
variants (C258D, C295D) to a tandem purification assay to
better understand the intrinsic activity of the enzyme, re-
moved from complicating factors of the enzyme matur-
ation process. The tandem purification appears to remove
nearly all contaminating proteins, at least as detectable by
SYPRO Ruby-stained SDS-PAGE gels, and generates well-
resolved bands that appear to correspond to the large and
small subunit (see Additional file 1: Figure S1). After nor-
malizing to protein content, we observed little difference
in specific activity between the three variants (Figure 3,
left). Western blot analysis shows (Figure 3, right) the unit
composed of the processed large subunit and unprocessed
small subunit species (P-U) is a dominant portion of the
total enzyme for both the C258D and C295D variants
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Figure 1 Crude whole cell screening assay for hydrogen evolution activity. Relative activities of amino acid substitutions at each of the 12
substitution positions predicted to ligate Fe-S clusters are presented. Error bars represent geometric standard errors propagated through
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Figure 2 Bacterial lysate activity assay. A) Hydrogen evolution activities of hydrogenases bearing select substitutions as ascertained by by
bacterial lysate assay. Error bars represent the standard error of the mean activity. The dotted line separates Asp substitution data from Asn
substitution data. B) SYPRO Ruby stain loading control for C) anti-HynL and D) anti-Strep western blots of bacterial lysates of select substitutions

suggesting an extrinsic processing or clearance defect
that results from these substitutions. SYPRO Ruby stain-
ing shows a qualitatively similar pattern, suggesting that
the observation is not an artefact of antibody binding
(Additional file 1: Figure S1). A TAT-signal processing
defective variant (substituting the twin arginine motif
for a twin lysine residues) had no detectable activity
(Additional file 1: Table S2, pIY009) suggesting that this
P-U species represents an inactive fraction of the total

enzyme. Densitometric analysis (n = 2) was used to quantify
the processed small subunit bands, and normalization of
hydrogen evolution activity to these adjusted values
based on the active band suggests that C258D is ap-
proximately 4 x more active than G1 and C295D is ap-
proximately 2 x more active than G1. Western blot
densities of HynL bands correlated to total protein,
further suggesting the purification procedure did not
discriminate between P-U and fully processed enzyme.
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Conclusions

The first objective of this study was to investigate broadly
whether hydrogenases tolerate the unusual amino acid
residues at the ligating positions in their primary struc-
ture. Our discovery was that the A. macleodii hydrogenase
is broadly tolerant of cysteine substitutions from the set
{Asp, His, Asn, Gln}; each of these residues yielded ac-
tivity when substituted at some position. Although
some position/residue combinations were not toler-
ated, all substitutions homologous to substitutions ob-
served in the sequence databases yielded measurable
hydrogen evolution activity. Our screening assay only
tested the evolution direction, so it is also possible that
even among those substitutions that are unmeasurably
poor in our assay, certain substitutions may remain ac-
tive in the uptake direction.

We further discovered that the aspartic acid substitutions
were the most active among all of the tested substitutions,
likely because of a minimal structural perturbation relative
to cysteine (shared with asparagine) and shared electro-
negative quality upon ligation to an FeS cluster. Examin-
ation of the lysates further suggested that the dominant
reason for the loss of activity relative to the G1 enzyme
likely results from a failure to properly process the
N-terminal TAT signal; further experiments may need to
be conducted to properly assess this effect, possibly by
tagging and separating the two dimeric species. Although
all the motifs we tested were active, their lowered activities
suggests that efficiency of small subunit synthesis may de-
pend on either second-sphere residues participating in the
installation of FeS clusters, or alternatively, host FeS clus-
ter synthesis machinery capable of installing FeS clusters
around different motifs.

The second objective of this study was to discover hy-
drogenases that are more active in the evolution direction,
possibly achieving this by modulating the electronic

landscape of the FeS pathway to the active site.
Normalization of hydrogen evolution to only the variant
of the small subunit that is likely active suggests that the
G1/C258D substitution is approximately 4 times more ac-
tive than the G1 enzyme, although in order to fully take
advantage of this improvement, a corresponding improve-
ment in extrinsic processing of the enzyme would need to
be developed. The isc-related ferredoxin fdx is known
to be involved in the small subunit processing of the
native E. coli hydrogenases [23], and overexpression of
the isc cluster has been used to improve yield of cyano-
bacterial ferredoxins [24]. A similar strategy of tandem
overexpression of the native E. coli isc or suf clusters,
or heterologous expression of the A. macleodii suf
cluster may achieve this goal. Orthogonal strategies
to improve electron transport through these FeS clus-
ters may involve manipulation of second-sphere amino
acids to alter the electrostatic environment. Our results
may be consistent with observations that the distal
FeS cluster tunes hydrogen evolution activity in a pH
dependent manner when the wild-type histidinyl ligation
is present [25].

This study represents a starting point for further study
into the nature of ‘non-canonical’ amino acid substitu-
tions that attach to FeS clusters. Our expression system,
with fairly minimal effort, enables isolation of highly
purified hydrogenase making it a good candidate for
such studies. Future studies should also consider mecha-
nisms featuring alternative electron transfer pathways, as
dye-mediated electron transfer may introduce artefactual
effects, such as delivery to clusters other than the distal
cluster. Finally, hydrogenases featuring other unusual
FeS clusters which are ligated by lysines, or an unusual,
recently discovered 4Fe3S cluster [26-28], may also be a
target for comprehensive substitution to {Asp, His, Asn,
Gln} in the fashion of this experiment.
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Methods

Molecular biology and plasmid construction

Plasmid pBCO001 is a derivative of pIY107, which con-
tains the Alteromonas macleodii “Deep ecotype” (DSM
17117) [29] hydrogenase operon driven by four TRC
promoters (Additional file 1: Table S3 and Additional file
1: Figure S2). In pIY107, the C-terminus of HynS is
modified with a strep-tag [8,30,31] and the N-terminus
of HynL is modified with a Hiss-tag. Details of the con-
struction of pIY107 will be published elsewhere, but we
provide its sequence in the Additional file 1. Plasmid
pBCO001 is a further modification of pIY107 where a se-
quence containing an Avrll site within the “orf2” gene of
pIY107 was silently mutated, and a new Avrll site was
added immediately before the terminator-promoter unit
preceding the synS ORF. With unique AvrIl and Agel
restriction sites flanking the /ynS gene, this modification
facilitated site-directed mutagenesis of hynS.

To construct pBC001, two amplicons of pIY107 were
generated using Q5 PCR kit (New England Biolabs): An
“upstream” amplicon spanning the region from the AvrIl
site in the middle of orf2 to the pTRC cassette, and a
“downstream” amplicon spanning the pTRC cassette to
the Agel site at the leading end of the /ynL gene. The up-
stream amplicon was generated by primers BCOOOAvrF
and BCOO1AvrR; the downstream amplicon was generated
by primers BCO02AvrF and IY171HynSR [8]; sequences
and descriptions of primers are provided in Additional
file 1: Table S4. A three-piece Gibson isothermal as-
sembly was then performed using both amplicons and
pIY107 doubly digested with Agel and Avrll. The se-
quence of the inserted region of pBC001 was confirmed
by Sanger DNA sequencing (Operon).

Plasmids pBC002 — pBCO049 were generated using
amplicons generated by forward primer BCO002AvrF
and a reverse primer bearing the appropriate DNA muta-
tions to effect a substitution, as well as a complementary
forward primer and the reverse primer IY171HynSR. A
full list of primers used is provided in Additional file 1:
Table S4. These amplicons were subjected to Gibson iso-
thermal assembly with plasmid pBC001 doubly digested
with the Avrll and Agel restriction enzymes. E. coli
transformation was initially performed in NEB-5a (New
England Biolabs) strain but then switched to Epi300
(Clontech). The DNA sequences of the inserted regions
spanning the /#ynS ORF were confirmed by Sanger DNA
sequencing (Operon).

Doubly substituted construct plasmids were generated by
amplification of regions bearing the 4 best-performing dis-
tal and 2 best-performing medial cluster aspartic acid sub-
stitutions, followed by adjustment to match concentration,
and Gibson isothermal assembly as described above. Six-
teen colonies of the assembly library were picked, screened,
and sequenced, fortuitously resulting in a full sampling of
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all 8 combinations of substitutions (likelihood ~25%) and
an additional 2 triply-substituted constructions (mechanism
of assembly unknown).

Crude whole cell hydrogenase screening assay

To quickly ascertain the effect of an amino acid substitu-
tion, a crude screen for hydrogen evolution activity was
employed. After transforming the plasmid bearing the
hydrogenase into Escherichia coli strain BL21AH, cells
[8,32] and overnight colony outgrowth, individual colonies
were picked and used to inoculate 1.7 mL of autoinduc-
tion media [33] in sterile 10 mL scintillation vials sealed
with sterile natural rubber septa (Aldrich). Cultures were
grown overnight (~24 hours) at 30°C, 200 rpm rotation.
Following growth, 0.1 mL of 40 mg mL ™" methyl viologen
(Aldrich) and 0.1 mL of 0.5 M potassium phosphate solu-
tion, pH 7.0, and 0.01 mL of 10% (w/v) Triton X-100
(Aldrich) were anaerobically added from a nitrogen-
sparged master solution. Finally, 0.1 mL of 2 M sodium
dithionite was anaerobically added and the sealed vial
was incubated for 2—4 hours at 30°C. Total hydrogen
evolved was assessed using gas chromatography (6890 N,
Agilent) using a Fused Silica Molsieve 5A column (CP7537,
Varian) of 250 uL samples taken from the vial headspace.
Activity was normalized to the activity of pBC001-bearing
cultures prepared in parallel.

Bacterial lysate activity assay
Bacterial lysate activity was measured as previously de-
scribed [8], except experiments were performed in 10 mL
vials; sparging was conducted under nitrogen; 250 uL
samples were taken from the vial headspace; and different
chromatography apparatus was used (6890 N, Agilent).
Briefly, bacteria were lysed using a probe sonicator
(Bransonic), and 0.2 mL lysate, cleared by centrifugation
(16,000 x g, 4°C), was added to a solution containing me-
thyl viologen and potassium phosphate solutions in pro-
portions as described above and were then sparged with
nitrogen gas. Sodium dithionite was added in propor-
tions as described above, and incubated for 2 hours at
30°C. Total hydrogen evolved was assessed using gas
chromatography and activity was normalized to total
protein content of the lysates as measured by Bradford
assay.

Tandem IMAC/strep-tactin hydrogenase preparation
Purified hydrogenases were expressed in 100 mL of auto-
induction media; containing 0.5% a-lactose and 0.01% glu-
cose; instead of lysis buffer, NP2 buffer (50 mM NazPO,,
100 mM NaCl, 1 mM 2-mercaptoethanol, pH 7.0) was
used; sonication was performed in two batches; and
sonicated cell matter was centrifuged for 20 minutes
instead of 10.
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An IMAC spin column was prepared by applying 200 pL
of TALON cobalt resin (Clontech) to an empty micro bio-
spin column (Bio-Rad) and rinsing twice with deionized
water and once with NP2 buffer. All spins except as noted
were performed at 27 x g for 10 s at 4°C. The resulting
cleared lysate was applied in two batches to the spin col-
umn; each batch was run through the column three times
using 20 s spins. The columns were further washed
using NP2 buffer (1 x 1 mL), NP2 buffer + 0.01% (w/v)
SDS (1x1 mL), NP2 buffer + 0.05% (v/v) tween-20
(5 x1 mL). Elution was achieved using three applications
of 200 pL of LP2 buffer (50 mM NazPO,, 100 mM NaCl,
1 mM 2-mercaptoethanol, pH 5.0). Each 100 mL expres-
sion was split into two batches processed in parallel, with
the elutions combined afterwards.

pH exchange was conducted by applying IMAC eluate
in three rounds (15 m at 13,000 x g, 4°C) to a 30 kDa
microcon spin membrane (YM-30, Millipore) followed
by one round after adding 500 uL of NP2 buffer. Reten-
tate was collected by inverting the cartridge and centri-
fuging (3 m at 3,000 x g), and rinsing with an additional
500 pL of NP2 buffer.

Streptactin purification was conducted by applying this
total retentate (~600 pL) to 100 pL of strep-tactin magnetic
beads (Qiagen) in a 1.5 mL Eppendorf tube (Denville),
followed by 1 h incubation with end-over-end agitation at
4°C. Beads were immobilized using magnetic separation
and exchanged with NP2 buffer (1 mL) four times, and
eluted using 100 uL NP2B (NP2 + 10 mM biotin), followed
by a second round of 50 uL NP2B buffer. Protein content
was determined by Bradford assay (Bio-Rad) and adjusted
to 0.02 mg mL™" for all samples. Hydrogenase assay was
measured as above, except 20 uL of purified enzyme was
diluted to 0.2 mL in NP2; and hydrogen evolution was con-
ducted over 20 hours.

SDS-PAGE analyses

Protein samples of crude, IMAC-purified, and tandem-
purified samples were adjusted to matching protein content
(0.1 mg mL™", 0.1 mg mL™", and 0.02 mg mL™" respect-
ively), supplemented with 5 x SDS-page loading buffer, and
boiled for 5 minutes. These samples were then loaded onto
a 10% NuPAGE Bis-Tris gel with the NuPAGE MOPS-SDS
running buffer system (Invitrogen), and run on ice at 150 V
for 2 or 4 hours.

For western blot analysis of crude samples from the
“bacterial lysate assay”, blots were prepared as described
previously [8].

For PAGE analysis of the samples from the “tandem
IMAC/strep-tactin preparation”, one gel containing Crude/
IMAC/tandem samples was subjected to SYPRO ruby
staining (Invitrogen) and imaged using a Typhoon fluores-
cence scanning imager (GE). A second gel containing
3 x replicates of tandem samples was subjected to western
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blot as described previously [8]. One set of replicates was
curved on the gel, complicating the densitometry boxing
procedure, so it was removed from analysis, although
qualitatively it presented similar results.

Supporting data
The data set supporting the results of this article is in-
cluded within the article (and its additional file).

Endnote

YAs HynS is N-terminally processed, we use sequence
numbers corresponding to the unprocessed HynS se-
quence because the exact cleavage site for the protein
has not been determined experimentally.

Additional file

Additional file 1: “A Broad Survey Reveals Substitution Tolerance
of Residues Ligating FeS Clusters in [NiFe] Hydrogenase”. Table S1.
Doubly- and Triply- substituted mutant list. Table S2. Table of measured
enzyme activities. Table S3. List of Plasmids used in this study. Table S4.
List of Primers used in this study. Figure S1. Sypro-Ruby stained gel of
tandem purification samples. Figure S2. plY107 Sequence (genbank format).
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