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Abstract

siro, a medically important storage mite.

dust mite group 4 allergens were found.

Background: Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized.
We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus

Results: A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and
identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an
unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4
revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was
recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house

Conclusions: We present the first protein-level characterization of a group 4 allergen from storage mites. Due to
its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.

Keywords: Aca s 4, Acarus siro, a-amylases, group 4 mite allergens, storage mites

Background

Storage mites are global pests of stored food products of
increasing medical and economical impact. In agricul-
tural environments, they cause occupational allergy in
farmers and grain handlers. Storage mites are also found
in house dust from rural and urban dwellings and are
important contributors to the allergen content, which
expands their clinical significance. The storage mites
belong to the Acaridae and Glycyphagidae families; our
work focuses on Acarus siro, one of the most frequent
and abundant species in central Europe.

More than two dozen groups of mite-derived allergens
have been described in the WHO/IUIS Allergen
Nomenclature database http://www.allergen.org. Aller-
gens from house dust mites of Dermatophagoides spp.
have been extensively studied; however, much less is
known about allergens from storage mites (e.g. 7 records
for A. siro allergens) (for review, see [1-3]). There is
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increasing evidence that mites contain epitopes that are
species-specific as well as cross-reactive among species.
The effect of a partial cross-reactivity between storage
mites and house dust mites and co-sensitization by both
groups further increases the medical impact of storage
mites [4-9]. A detailed analysis of storage mite-derived
allergens at the protein level will be necessary to better
evaluate aspects of their sensitization specificity and bio-
chemical activity, as well as to improve diagnosis and
treatment.

Group 4 mite allergens are homologous proteins of
the a-amylase class [10,11]. Group 4 allergens have
been investigated in house dust mites such as Dermato-
phagoides pteronyssinus, Euroglyphus maynei, and Blo-
mia tropicalis, and their sequences have been
determined [12-14]. The biochemical properties of Der
p 4 were analyzed in detail, including its interaction
with major cereal flour allergens that act as a-amylase
inhibitors [14,15]. The IgE-binding activity of group 4
allergens has been demonstrated for ~30% of allergic
subjects in Western populations and China [12-14];
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these allergens may also be the major contributor to the
serum activity, as found in an Australian Aboriginal
community [16]. In this work, we analyze native Aca s 4
from A. siro, the first a-amylase allergen to be isolated
from storage mites. Specifically, we describe its bio-
chemical and immunological properties. Furthermore,
we provide insight into the 3D structure of Aca s 4 with
the help of a novel homology model, the first 3D model
of a group 4 allergen.

Results and Discussion

Quantification of a-amylase activity in A. siro

A high o-amylase activity was demonstrated in the
whole body extract from the storage mite A. siro using
chromogenic starch as a substrate. Figure 1 shows that
this activity was one order of magnitude higher than
that measured for a model house dust mite D. farinae
(specific activity 599.6 + 18.0 and 64.1 + 0.3 U.mg" pro-
tein, respectively). In both species, a pronounced a.-amy-
lase activity was also detected in the faecal extract,
suggesting that a-amylases are digestive enzymes
secreted into the gut lumen and released in the mite
faeces (Figure 1).

For comparison, the proteolytic activity was deter-
mined in the whole body extracts, which showed that D.
farinae has a higher proteolytic activity than A. siro
(specific activity 21.9 + 0.9 and 16.5 + 0.4 U.mg™' pro-
tein, respectively) and a higher content of cysteine
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Figure 1 Distribution of a-amylase and protease activities in
the whole body extract and faecal extract of A. siro (A.s.) and
D. farinae (D.f.). The a-amylase activities were assayed at the
respective pH optima with RBB-starch as a substrate. The protease
activities were assayed with azocasein as a substrate; the
contribution of cysteine proteases (dashed) was determined as the
part of protease activity inhibited by E-64. The specific activities
(units per mg protein) are normalized to the maximum value
measured for a-amylases and proteases, respectively; mean values +
SE are given.
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proteases (Figure 1). We conclude that there is an
important difference in the distribution of digestive
enzymes in these model species of storage and house
dust mites, which most likely reflects their feeding ecol-
ogy. The high level of a.-amylase activity in A. siro is in
accordance with the feeding preferences of A. siro, a
granivorous species evolutionarily adapted to utilization
of a starch-rich diet [17].

Isolation and proteomic identification of Aca s 4
o-Amylase was purified to homogeneity from the whole
body extract of A. siro using an optimized procedure for
affinity precipitation with glycogen. The typical yield
was approximately 175 pg from 1 g of fresh weight of
mites. The purified enzymatically active a-amylase
migrated as a single band of 56 kDa on SDS-PAGE (Fig-
ure 2). We performed a two-pronged proteomic charac-
terization of this protein: (i) the N-terminal amino acid
sequence, XSPYSNPHFTGSR (X is an unidentified resi-
due), was determined by Edman sequencing and (ii) the
protein was subjected to enzymatic digestion followed
by LC-MS/MS analysis. The data were searched against
the UniProt protein database, which revealed identity
with the cDNA-derived protein sequence of an A. siro
o-amylase homolog denoted Aca s 4 (GenBank:
ABL09312). The MS/MS peptide coverage of this
sequence was ~31% (Figure 3). A theoretical mass calcu-
lated for the mature Aca s 4 (sequence starting at the
native N-terminus) is 55956 Da, which is in good agree-
ment with the experimental value obtained for the puri-
fied Aca s 4 (Figure 2).

Biochemical functional characterization of Aca s 4

The purified Aca s 4 was characterized with regard to
its substrate and inhibitor interactions. The pH profile
(Figure 4a) shows that the enzyme functions in the
slightly acidic to neutral range, with a maximum at pH
~6.5, which is in accordance with the pH optimum of
o-amylase activity measured with the whole body
extract of A. siro [17]. A similar pH optimum was also
reported for the purified Der p 4 [14]. We tested the
modulation of the Aca s 4 activity by chloride ions,
which are general activators of animal a-amylases
[18,19]. Figure 4b shows the activation of a typical
chloride-dependent a.-amylase from porcine pancreas
and of Aca s 4 in the presence of NaCl. Chloride ions
induced an increase in the activity of both Aca s 4 and
its porcine homolog; however, Aca s 4 was activated to
a lesser extent. Aca s 4 was inhibited by acarbose (ICsq
~3.8 uM), a microbial oligosaccharide that is a general
inhibitor of enzymes of the a-amylase class. This is in
line with our previous finding that acarbose exerts an
acaricidal activity against A. siro by inhibiting its diges-
tive amylolytic activity [17]. Interestingly, Aca s 4 was
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Figure 2 Purification and IgE reactivity of Aca s 4. The whole body extracts (20 pg) of A. siro (A.s WB) and D. farinae (D.f. WB) and the
purified Aca s 4 (2.5 ug) were resolved by SDS-PAGE. Left-hand panel: A gel stained for protein with Coomassie blue. Right-hand panel: Western
blot probed with pooled sera from mite-allergic patients sensitive to Dermatophagoides spp. and with anti-IgE antibodies and developed by
chemiluminescence. For immunostaining inhibition (inhib.), the pooled sera were preincubated with purified Aca s 4. The arrows mark the
position of Aca s 4 (~56 kDa) with the N-terminal sequence determined by Edman sequencing. Molecular mass standards are indicated.

insensitive to inhibition by two types of proteinaceous
inhibitors of plant origin, namely wheat inhibitors WI-1
and WI-3 (tetrameric and monomeric form, respec-
tively) and bean inhibitor aAI-1, which are potent inhi-
bitors of various insect and mammalian o-amylases
[20,21]. A pronounced inhibitory effect against Der p 4
has been reported for the tetrameric wheat inhibitor
[15]. We applied a combinatorial library of synthetic
PAMIs (Peptide a-Amylase Inhibitors) that was devel-
oped to analyze the inhibitory specificity of o.-amylases
[22]. Using this tool, we compared the inhibitory specifi-
city of Aca s 4 and Der f 4 (an a-amylase of the house
dust mite D. farinae, measured in the extract). Figure 4c
shows that inhibition profiles of both enzymes follow
the same general trend but also have distinct features.
This result indicates that the active site regions of mite
a-amylases share overall architecture but differ in some
structural details. This analysis helps increase under-
standing of the different affinities of mite o.-amylases to
natural proteinaceous inhibitors such as the wheat o-
amylase inhibitor [15].

Three-dimensional model of Aca s 4

A structural model of Aca s 4 was created by homology
modeling (see Methods for details). The Aca s 4 struc-
ture shows an overall fold and secondary structure ele-
ments forming three consensus domains as in the insect
and mammalian a-amylases (Figure 5a) [10,11]. The dis-
ulfide pattern is composed of four conserved disulfides
and one additional disulfide (Cys113-Cys126) located in
the B domain (Figure 3); Aca s 4 does not contain free-

thiol cysteines, as demonstrated experimentally by a
thiol labeling experiment (see Methods, data not
shown). The catalytic center of Aca s 4 consists of three
acidic residues and retains the characteristic o.-amylase
architecture (Figure 5a). We inspected the calcium-bind-
ing and chloride-binding sites, which are known to be
important for active site function in the animal o.-amy-
lases. The structure of the calcium-binding site, which is
necessary for the stabilization of the active site, is pre-
served in the Aca s 4 model. In contrast, the chloride-
binding site of Aca s 4 was found to be modified in
comparison with the structures of other animal o.-amy-
lases. The typical chloride-binding residues Argl94,
Asn295 and Arg334 (Aca s 4 numbering) forming the
“RNR signature” are not all conserved, and Asn295 is
replaced by Ser in Aca s 4 (Figure 3). Furthermore, a
comparison of the Aca s 4 sequence with those of its
homologs available in the sequence database showed
that this substitution (resulting in RSR signature of the
chloride-binding site) is specific for a-amylases of mite
origin (Figure 3). The chloride ion serves as an allosteric
activator of catalysis of o.-amylases [18,19]. The lower
sensitivity of Aca s 4 to chloride activation (Figure 4a) is
likely due to the substitution of Asn with Ser in the
chloride-binding site. This is supported by a study per-
formed on human pancreatic a-amylase in which the
chloride-binding residues were mutated [18]; the substi-
tution at position 295 resulted in a defect in catalytic
efficiency and chloride binding that resembles the beha-
vior of Aca s 4. Recently, we have described another
evolutionarily acquired mutation (Arg-to-Gln334) in the
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Figure 3 Multiple sequence alignment of Aca s 4 with other a-amylases of mite origin and human a-amylase. Aca s 4: Acarus siro
(GenBank: ABL09312); Tyr p 4: Tyrophagus putrescentiae (GenBank: ABM53754); Blo t 4: Blomia tropicalis (GenBank: AAQ24543) [12]; Eur m 4:
Euroglyphus maynei (GenBank: AAD38943) [13]; Der p 4: Dermatophagoides pteronyssinus (GenBank: AAD38942) [13]; HPA: human pancreatic o-
amylase (GenBank: AAH07060). The sequence similarities to Aca s 4 are 74%, 70%, 64%, 66%, and 50%, respectively. Full-length sequences of

mature proteins are aligned. Amino acids identical to those of Aca s 4 are shaded. In the Aca s 4 sequence, the N-terminal sequence

determined by Edman sequencing (dotted underline) and fragments determined by LC-MS/MS analysis (solid underline) are indicated. Positions
of catalytic residues (@) and residues binding the CI” (#) and the Ca®* (*) are marked. N-glycosylation signals are double underlined (Aca s 4 and
Blo t 4 have no predicted N-glycosylation sites). Note the Asn295Ser mutation located in the CI" -binding site of mite a-amylases (compared to
HPA and other animal a-amylases). Cys residues forming four conserved disulfide bridges (+) and one specific disulfide (+) in the Aca s 4

molecule are marked.
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Figure 4 Enzymatic properties of purified Aca s 4. (a) pH profile determined with RBB-starch as a substrate. Mean values + SE are normalized
to the maximum value. (b) Activation effect of NaCl on amylolytic activity of Aca s 4 (solid line) and porcine pancreatic o-amylase (PPA) (dashed
line) measured with the RBB-starch assay. Mean values + SE are expressed as a percentage of activity relative to the control without NaCl (100%).
(o) Inhibition profile of Aca s 4 determined by a library of PAMIs with the general structure Ac-XHWYYRCW-NH,; the X position contains one of
the 20 naturally occurring amino acids as indicated. The inhibition sensitivity of the purified Aca s 4 (hatched) is compared to that of whole
body extracts of A. siro (gray) and D. farinae (black). Mean values + SE are expressed as the percentage of amylolytic activity (RBB-starch assay)

relative to the uninhibited control (100%).

chloride-binding site that leads to the chloride-indepen-
dence of alkaline a.-amylases of lepidopteran insects
[21].

Immunoreactivity of Aca s 4

The IgE reactivity of Aca s 4 was tested by immunoblot-
ting using pooled sera from patients allergic to house
dust mites (see Methods). Figure 2 shows binding of IgE
to the purified Aca s 4; the staining was specific, as it
was inhibited when using pooled sera preincubated with
Aca s 4. The staining pattern of the whole body extract
of A. siro demonstrated that Aca s 4 of ~56 kDa is a sig-
nificant IgE-reactive component although it is a protein
of low abundance in the A. siro extract. Aca s 4 is likely
recognized by serum IgE due to (i) a cross-reactivity
with homologous a-amylase allergens from house dust
mites (see a ~56 kDa band immunostained in the whole
body extract of D. farinae in Figure 2) and/or (ii) a reac-
tivity of anti-Aca s 4 IgE induced by exposure to A. siro
(most likely during co-sensitization with house dust
mites). To gain insight into the structural basis of a pos-
sible cross-reactivity, we compared Aca s 4 with Der p
4, an o-amylase allergen from D. pteronyssinus with
known sequence (GenBank: AAD38942; [13]). Both
sequences display a 66% amino acid identity. The con-
served sequence regions are shown on the surface
model of Aca s 4 (Figure 5b); they form a dense net of

clusters representing the potential common IgE-binding
epitopes.

Conclusions

Our work provides the first comprehensive protein-level
analysis of the a.-amylase allergen Aca s 4 from A. siro.
The results give new insights into the biochemistry of
the group 4 allergens of mites and suggest that the
interaction of Aca s 4 with patients’ IgE may be relevant
to allergic hypersensitivity to mites.

Methods

Materials

Enzyme inhibitors: Acarbose was obtained from Bayer
(Berlin, Germany); WI-1, WI-3 and E-64 from Sigma
(St. Louis, MO); and Pefabloc from Roche (Indianapolis,
IN). o AI-1 was isolated according to [20]; the develop-
ment and synthesis of PAMIs is described in [22]. The
substrates and enzymes: Remazol Brilliant Blue dyed
starch (RBB-Starch) and azocasein were purchased from
Fluka (Buchs, Switzerland), porcine pancreatic c.-amy-
lase (PPA) from Sigma. The A. siro and D. farinae origi-
nated from laboratory cultures that were maintained
and mass-reared as previously described [17,23]. Live
mites were collected from the stock culture and washed;
the faeces were separated from the spent growth med-
ium by sieving [23]; these materials were stored at -80°


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAD38942

Pytelkova et al. BMC Biochemistry 2012, 13:3
http://www.biomedcentral.com/1471-2091/13/3

Figure 5 Spatial model of Aca s 4 built by homology modeling
and simulations. (a) The Aca s 4 structure (in ribbon
representation) is composed of the consensus a.-amylase domains A
(green), B (red), and C (brown). Three catalytic residues (D196, E232,
D297) in the active site are highlighted (orange ball-and-stick). The
calcium ion is depicted as a magenta sphere. The chloride binding
site (blue sticks) is composed of the conserved binding residues
R194 and R334 and the residue S295, which is specific for mite a.-
amylases; the chloride ion is shown as a light blue sphere. The
disulfide bridges are represented by yellow sticks. (b) A
superposition of Ca traces of Aca s 4 (magenta) with HPA (cyan;
PDB: 2CPU) used as a template for Aca s 4 modeling. The disulfide
bridges are represented by yellow (Aca s 4) and orange (HPA) sticks;
non-conserved disulfides are marked by asterisks. (c) The surface
model of Aca s 4; the right-hand view is in the same orientation as
in (a). The molecule is colored red for residues that are identical for
Aca s 4 and Der p 4.

C. The pooled serum was prepared from serum samples
collected from 33 subjects from the Czech Republic
with allergies to house dust mites. The patient sera had
specific IgE levels against D. farinae and/or D. pteronys-
sinus above 0.72 kU/I (scores of class 2 to 6); the titer
was determined using an IgE-capture immunoenzymatic
ALLERGEN System (Radim Diagnostics, Pomezia, Italy).
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Protein extracts

The biological samples (mite bodies or faeces) were
homogenized (50 mg fresh weight per mL) on ice in 50
mM MES, pH 6.0, containing 5 mM CaCl,, 0.1 M NaCl,
25% glycerol, 0.02% NaNj3, and protease inhibitors (10
UM E-64 and 1 mM Pefabloc). The inhibitors were not
included in the extracts used for proteolytic activity
measurements. The homogenate was centrifuged (10000
g, 10 min, 4°C), and the supernatant was filtered with a
Micropure-0.22 Separator (Millipore, Bedford, MA); the
final extracts were stored at -80°C. The protein content
was quantified by bicinchoninic acid protein assay
(Pierce, Rockford, IL).

Isolation of Aca s 4

The purification procedure was based on a previously
described method [21]. The whole body extract of A.
siro was prepared in 50 mM Na acetate, pH 5.0, con-
taining 5 mM CaCl,, 10% glycerol and protease inhibi-
tors (10 uM E-64 and 1 mM Pefabloc). Ethanol was
added to a final concentration of 40%, keeping the sam-
ples on ice, and the mixture was centrifuged (10000 g,
10 min, 4°C). The supernatant was treated with 0.2%
glycogen for 5 min on ice, and the a-amylase-glycogen
complex was collected by centrifugation (10000 g, 10
min, 4°C) and washed with the extraction buffer con-
taining 40% ethanol. The final sediment was incubated
with rotation (2 h, 26°C) in 50 mM MES, pH 6.0, con-
taining 5 mM CaCl, and 10% glycerol and dialyzed
against the same buffer. The purity of the isolated Aca s
4 was confirmed by Laemmli SDS-PAGE, and its con-
centration was determined by bicinchoninic acid protein
assay.

Proteomic methods

Mass spectrometric characterization of Aca s 4 was per-
formed by LC-MS/MS analysis of the tryptic digest. The
LC-MS/MS analysis was performed on a LTQ Orbitrap
XL hybrid mass spectrometer (Thermo Scientific, Wal-
tham, MA) coupled to a Rheos 2000 2D capillary HPLC
system (Flux instruments, Basel, Switzerland). The first
dimension column was a monolithic PS-DVB (200 um x
10 mm, Dionex, Sunnyvale, CA), and the second dimen-
sion column was a C18 PepMap 100 (75 pm x 150 mm
x 3 pum, Dionex) with gradient elution in a 0.1% formic
acid/acetonitrile system. The LC-MS/MS data were pro-
cessed with Sequest and Bioworks software (Thermo
Scientific) and searched against the UniProt protein
database http://www.uniprot.org. N-terminal Edman
sequencing of Aca s 4 was performed by using a Procise
494 cLC protein sequencer (Applied Biosystems, Carls-
bad, CA). The amino acid sequences were searched by
BLAST http://blast.ncbi.nlm.nih.gov and aligned by
ClustalW http://www.ebi.ac.uk/Tools/msa/clustalw2.
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The labeling experiment for the detection of free-thiol
cysteines in Aca s 4 was performed with 5-iodoacetami-
dofluorescein (Molecular Probes, Eugene, OR) under
denaturing conditions followed by SDS-PAGE visualiza-
tion as previously described [24].

Enzyme activity and inhibition assays

a-Amylase activity was assayed with the chromogenic
substrate RBB-starch. An enzyme aliquot was incubated
(20 min, 26°C) with 0.3% RBB-starch in 0.1 M Britton-
Robinson buffer at the pH optimum of the enzyme (6.5
for Aca s 4 and A. siro extract, 7.0 for D. farinae extract,
6.9 for PPA) or at pH 4.5-9.0 (pH profiling). The reac-
tion was stopped with 0.2 M NaOH, the mixture was
centrifuged (10000 g, 10 min), and the absorbance at
620 nm of the supernatant was measured against a con-
trol sample (incubated in the absence of enzyme/
extract). Typically, 0.35 U of a.-amylase activity at the
pH optimum was used in the assay (1 U produces Agyg
am = 1). For the activity assay in the presence of o.-amy-
lase inhibitors, an enzyme aliquot was preincubated (20
min, 26°C) in the assay buffer with the following inhibi-
tor concentrations: 10 pM WI-1, WI-3, or atAl-1; 0.1-10
uM acarbose; 10 uM PAMI for D. farinae extract and
50 uM PAMI for Aca s 4 and A. siro extract. For the
activity assay in the presence of NaCl, enzyme samples
were dialyzed against water. The measurements were
performed in triplicate. Proteolytic activity was assayed
with the chromogenic substrate azocasein at pH 6.0
essentially as described [25]. The inhibition of cysteine
proteases in the extract was performed by preincubation
(10 min, 26°C) with 10 pM E-64.

Homology modeling and molecular simulations

A 3D model of Aca s 4 was created with the SwissMo-
del server [26] using the Aca s 4 sequence GenBank:
ABL09312 and the X-ray structure of human pancreatic
o-amylase (HPA) (PDB: 2CPU) as a template. The
model did not include the terminal residues 1-4 and 496
due to the lack of homology with the human enzyme
(residue numbering is according to the mature Aca s 4
sequence). The Ca®* and Cl ions were inserted manu-
ally according to the 2CPU structure. Four conserved
disulfide bridges (linking positions 31-87, 140-159, 376-
382,449-461) were constructed automatically by Swiss-
Model, while an additional disulfide connecting Cys113
and Cys126 was modeled using the following simulation
protocol: (i) minimization of the added hydrogens, (ii)
minimization and molecular dynamics of the segment
104-133: 50 ps at 10 K with a restraint (5 to 500 kcal.
mol1.A™) on the disulfide S-S distance, (iii) molecular
dynamics of the segments extending to 43-167: 50 ps at
300 K, and (iv) minimization of the segment spanning
residues 43-167. The non-conserved disulfides Cys113-
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Cys126 of Aca s 4 and Cys70-Cys115 of HPA are asso-
ciated with conformational differences in domain B. The
final Aca s 4 structure was validated using Molprobity
[27] and deposited in the Protein Model Data Bank
http://mi.caspur.it/PMDB/ under the accession code
PMO0077555. Structure figures were prepared with
PyMOL (DeLano Scientific LLC, San Carlos, CA).

Electrophoretic and immunological methods

The proteins were separated by reducing Laemmli SDS-
PAGE (15% gel), then stained with Coomassie blue or,
for immunostaining transferred to a PVDF membrane
by electroblotting. Immunoblots were developed using
pooled patients’ sera (diluted 1:1000 in 10 mM Tris-
HCl, pH 7.4, containing 150 mM NaCl and 0.05%
Tween 20), anti-human IgE antibody conjugated with
horseradish peroxidase (Sigma) (1:25000), and Super-
Signal West Pico chemiluminescent substrate (Pierce).
Protein molecular mass standards (PageRuler Plus Pre-
stained Protein Ladder, 10-250 kDa, Fermentas, Burling-
ton, Canada) were not immunostained under these
conditions. For the inhibition experiment, the pooled
sera were preincubated with purified Aca s 4 (1 pug/10 pl
serum). The blots were visualized with a LAS-4000
luminescent image analyzer (Fyjifilm, Valhalla, NY).
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