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Abstract
Background: The FF domain is conserved across all eukaryotes and usually acts as an adaptor
module in RNA metabolism and transcription. Saccharomyces cerevisiae encodes two FF domain
proteins, Prp40, a component of the U1 snRNP, and Ypr152c, a protein of unknown function. The
structure of Prp40, its relationship to other proteins within the U1 snRNP, and its precise function
remain little understood.

Results: Here we have investigated the essentiality and interaction properties of the FF domains
of yeast Prp40. We show that the C-terminal two FF domains of Prp40 are dispensable. Deletion
of additional FF domains is lethal. The first FF domain of Prp40 binds to U1 protein Luc7 in yeast
two-hybrid and GST pulldown experiments. FF domains 2 and 3 bind to Snu71, another known U1
protein. Peptide array screens identified binding sites for FF1-2 within Snu71 (NDVHY) and for FF1
within Luc7 (ϕ[FHL] × [KR] × [GHL] with ϕ being a hydrophobic amino acid).

Conclusion: Prp40, Luc7, and Snu71 appear to form a subcomplex within the yeast U1snRNP.
Our data suggests that the N-terminal FF domains are critical for these interactions. Crystallization
of Prp40, Luc7, and Snu71 have failed so far but co-crystallization of pairs or the whole tri-complex
may facilitate crystallographic and further functional analysis.

Background
Spliceosome assembly in yeast occurs in a stepwise man-
ner with U1, U2, U4/U6 and U5 snRNPs binding sequen-
tially to the pre-mRNA and each other. The first defined
step is the building of the commitment complex in yeast
or the E complex in metazoans where the U1snRNP binds
initially to the 5' splice site. The metazoan U1snRNP con-
tains the proteins U1-A, U1-70K and U1-C. The yeast
U1snRNP contains the homologs of these proteins,
Mud1, Snp1 and Yhc1, as well as seven additional pro-
teins [1-10].

In yeast the essential U1snRNP component Prp40 plays
an important role in bringing the 5' and 3' splice sites into
spatial proximity so that the intron can be spliced out of
the pre-mRNA [1]. Ito et al[11] found Prp40 to interact
with Snu71 among their "core" yeast two-hybrid (Y2H)
data. To our knowledge, no direct interaction between
Prp40 and Luc7 has been reported although both proteins
have been found in the same complex multiple times (e.g.
[12,13]).

Prp40 is a modular protein consisting of a pair of WW
domains followed by a series of four FF domains (Fig. 1).
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Prp40 FF domains 1–3 bind to Snu71 I and FF domain 1 binds to Luc7 IIFigure 1
Prp40 FF domains 1–3 bind to Snu71 I and FF domain 1 binds to Luc7 II. Binding sites of FF domains and Luc7 and 
Snu71 were roughly mapped by Yeast-2-hybrid assays. A, Two-hybrid assay testing binding of Prp40 FF domain constructs 
(FF1, FF2, FF3; FF4, FF1-2, FF2-3, FF3-4, FF1-3) to full-length clones and fragments of Snu71 and Luc7 (for domains and frag-
ments see panel B). Each encircled colony indicates a two-hybrid interaction (weak interactions in hatched circles). B, Sche-
matic overview of Prp40 FF domain interactions (arrows) with the U1snRNP proteins Snu71 and Luc7 in the context of the 
U1snRNP as illustrated by the human U1snRNP (modified after [9]). Note that the structural model of the human U1snRNP 
does not include any of the proteins studied here. The dashed line extending to the FF1 domain indicates that the full length 
Snu71 interacts with FF2-3 whereas Snu71-I interacts only with domains FF1-3.
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FF domains were first described in 1999 by Bedford &
Leder as domains of about 60 amino acids including two
conserved Phenylalanines (F) after which the domain was
named [14]. Typically FF domains occur in tandem arrays.
For example, among the 78 metazoan FF domain proteins
listed in the SMART database [15], 13 have 2 or 3 FF
domains, while all others have 4 to 6. The structure of
three FF domains has been solved recently: the FF1
domain of the human protein HYPA/FBP11, the FF1
domain of the yeast protein Prp40, and the single FF
domain of Urn1/Ypr152c [16-18]. FF domain proteins
can be classified in two families: the p190 Rho GTPase-
related proteins [19] and the WW/FF family whose mem-
bers contain one or more WW domains followed by sev-
eral FF domains. Three proteins of the latter family are
known to recognize the phosphorylated C-terminal
domain (CTD) of the RNA polymerase II via their FF
domains, namely the human transcription elongation fac-
tor CA150, the human splicing factor FBP11 and the yeast
splicing factor Prp40 [16,20-22]. Furthermore, FF
domains of CA150 seem to use multiple independent
binding sites rather than to bind cooperatively to proteins
such as the transcription and splicing associated factor
Tat-SF1 [23]. The FF1 domain of Prp40 is known to inter-
act with Clf1 (Crooked neck-like factor), an essential and
well conserved multifunctional protein [24]. The role of
the second yeast FF protein, Urn1/Ypr152c, which con-
tains one WW domain and one FF domain, may be a splic-
ing factor too [18].

Here we investigated the role of the FF domains and their
binding specificity. More specifically, our study aims to
complement other data in order to define a consensus
binding site for FF domains, such as those sites known for
other domains such as the SH3 domain (whose consensus
binding site is "proline-rich"). We addressed this problem
by a combination of genome-wide yeast two-hybrid
screens, in-vitro binding assays, peptide arrays, and
genetic experiments.

We show that only two of the four FF domains of Prp40
are essential and explain this behaviour by their interac-
tions with two other components of the yeast U1 snRNP.
The binding site we found significantly differs from previ-
ously published binding sites of FF domains and thus
implicates that FF domains are interaction modules with
a wide range of specificities, in stark contrast to other
domains such as SH3 or PDZ domains.

Results
Prp40 interacts with Luc7 and Snu71 via its FF domains
To investigate the interaction properties of yeast FF
domains, we first screened Prp40 and Urn1/Ypr152c as
well as several isolated FF domain baits against genome
wide yeast two-hybrid arrays containing almost all ORFs

of Saccharomyces cerevisiae as Gal4-activation domain
fusions (preys [25]). These screens resulted in only two
interaction partners, Snu71 and Luc7, two other known
components of the U1 snRNP [12,13,26]. No interaction
partners could be identified for the full-length Ypr152c
protein, nor for its FF domain bait.

Once Prp40 was identified as interacting bait, we cloned
its FF domains and combinations thereof and tested these
as baits against fragments of Snu71 and Luc7 as preys (see
methods for domain definitions). These experiments
showed that the FF1 domain of Prp40 binds to a C-termi-
nal fragment of Luc7 (Luc7 II, Fig. 1). Similarly, a C-termi-
nal fragment of Snu71 (Snu71 I) binds to Prp40 FF
domains 1–3. Interestingly, full length Snu71 but not
Snu71-I interacts with the FF2-3 domain fragment (Fig.
1).

We have also screened isolated domains or combinations
thereof as baits against our genome-wide prey array. How-
ever, no new proteins were found this way: FF1-4 inter-
acted with Snu71 and Luc7, while FF1-3 and FF2-3
interacted only with Snu71 but not Luc7 in these screens
(data not shown).

These results encouraged us to revisit the protein topology
of the U1 snRNP. We tested all U1snRNP associated pro-
teins by systematic pairwise yeast two-hybrid tests using
full-length bait and prey constructs but found only the
previously detected interactions Prp40-Snu71 and Prp40-
Luc7.

To verify the yeast two-hybrid experiments by an inde-
pendent method we performed GST pulldowns. Different
FF domains were expressed as GST fusion proteins in E.
coli and purified on glutathione sepharose beads. Surpris-
ingly, protein constructs containing the FF3 domain con-
sistently failed to be expressed in significant amounts. We
conclude that the FF3 domain renders the FF3, FF2-3, FF1-
3 and FF1-4 constructs somehow insoluble or unstable.
Nevertheless, Snu71 and Luc7 were translated and 35S-
labeled in vitro and incubated with the remaining GST-FF
fusion proteins. These experiments clearly showed that
Luc7 binds specifically to the FF1 and possibly FF2
domains of Prp40 although binding to FF2 was signfi-
cantly weaker than to FF1 (Fig. 2). Unfortunately, the
interaction between Prp40-FF1-3 and Snu71 could not be
confirmed this way as it involved the inaccessible FF3
domain.

FF domains bind to specific peptides in Luc7 and Snu71
The two-hybrid mapping experiments did not provide any
information about the precise binding sites of the Prp40
FF domains within Luc7 and Snu71. In order to map the
binding sites of the Prp40 FF domains we synthesized
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overlapping 15-mer peptides of Luc7 and Snu71 on nitro-
cellulose membranes and probed them with GST-FF
domain fusions (Fig. 3). The peptides used covered the
regions of Luc7 (amino acids 93–261) and Snu71 (amino
acids 329–536) that were shown to interact in Y2H assays
(Fig. 1). These screens identified a peptide in the C-termi-
nal half of Luc7, D214RRLADHFLGKIHLG228 (A24), that
appeared to be the primary interactor of the FF1 domain
(Figs. 3B–D). Although the results shown in Figures 3A–B
used a fusion of FF1-2 an explicit goal of this project was
to identify targets of single FF domains. Hence the follow-
ing experiments (Figs. 3C–D) were carried out with FF1 as
this domain appeared to contribute most to binding (Fig.
2). The A24 peptide was characterized by systematic
alanine scans (Fig. 3C) and substitution analysis (Fig. 3D)
to define critical amino acids for the interaction with the
FF1 domain of Prp40. This analysis clearly showed the
importance of the FLGKIH motif for binding – only Gly-
cine-223 and Histidine-226 seemed less important for
binding. Based on our substitution analysis this interact-

ing motif can be generalized as ϕ[FHL] × [KR] × [GHL]
where ϕ may be any hydophobic amino acid (Fig. 3E).
Interestingly, the Luc7 binding site showed no similarity
to the interaction region (peptide B1:
H418LANDVHYDHHRSFK432) in Snu71 which was
obtained by the same approach (Fig. 3A). A consistent
interaction region (N421DVHY) narrowed down by four
overlapping peptides was detected when Snu71 II was
synthesised on a CAPE-membrane as 20-mer overlapping
peptides with 3 amino acid shifts and probed with GST-
FF1-2.

Only FF1 and FF2 domains are essential in yeast Prp40
Although the two-hybrid mapping experiments indicated
that the first two FF domains of Prp40 are the most impor-
tant ones, their physiological role remained unclear. To
determine the physiological role of the four FF domains in
Prp40 we deleted one or more FF domains starting from
the C-terminus in vivo (Fig. 4). In each mutant strain the
deleted FF domain was replaced by a proteinA/kanMX6

The FF1 domain of Prp40 binds to Luc7 in vitroFigure 2
The FF1 domain of Prp40 binds to Luc7 in vitro. Various GST-Prp40FF domain fusion proteins (FF1, FF2; FF4, FF1-2, 
FF3-4) were tested for Luc7 binding in vitro. Top panel shows Coomassie blue-stained GST fusion proteins, while bottom row 
shows autoradiography of bound Luc7 protein. Luc7 bound to a construct containing FF1-2 domains as well as to the FF1 
domain alone, but barely to FF2 alone. I, input; L, ladder (molecular mass marker).
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FF domains of Prp40 bind to specific peptides within Snu71 and Luc7Figure 3
FF domains of Prp40 bind to specific peptides within Snu71 and Luc7. A, Peptides of Snu71-I (aa 329–536) and Luc7-
II (aa 93–261) were synthesised as 15 mers with 3 aa shifts on a β-alanine membrane. A control peptide (QRALAKDLIVPRRP, 
position C17) binds to the α-GST antibody. Incubation with GST-FF1-2 showed a strong signal at peptide B1 and A24 (panel 
B). B, Peptide scan as in A but with Luc7 peptides probed with GST-FF1-2. Control membranes probed with GST alone were 
negative (data not shown). C, Alanine-scan of the peptide found in B (position A24, wildtype sequence: DRRLADHFLG-
KIHLG). Letters mark the amino acids which were replaced by alanine. GST-FF1 served as probe. The most important amino 
acid for the interaction are shown in bold. D, Substitution analysis of the Luc7 peptide sequence from C, probed with GST-FF1. 
Each residue within this sequence was substituted by 20 naturally occurring L-amino acids. All spots in circles represent the 
wild-type amino acids. All other spots are single substitution analogs, with rows defining the sequence position that is substi-
tuted and columns defining the amino acid that replaces the wild-type residue. E, The Luc7 motif bound by the FF1 domain of 
Prp40 as found in D. ϕ stands for hydrophobic amino acids, green indicates hydrophobic, yellow indicates polar, blue indicates 
basic and orange indicates acidic amino acids. White letters on black background represent the wildtype amino acids within the 
sequence.
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cassette for selection of deletion mutants and easy protein
detection (Fig. 4A). We were unable to isolate a deletion
of FF domain 4 and thus assumed it to be essential. How-
ever, the deletion of FF domains 3–4 (FFΔ3-4ProA) was
viable albeit it showed a clear growth defect when com-
pared to two control constructs (FF1-4ProA, i.e. wildtype
Prp40 with Protein A fused to its C-terminus and the
wildtype control strain PJ69-4α) (Fig. 4B). Deletions of FF
domains 2–4 and 1–4 appear to be lethal too as we could
not isolate such mutants. These results confirmed our ini-
tial two-hybrid findings which indicated that FF1 and FF2
are critical for Prp40 whereas FF3 and FF4 may only
increase its activity and/or stability.

FFΔ3–4 deletions do not inhibit splicing of DBP2 and 
ECM33
Because Prp40 is a well-established component of the U1
snRNP, we reasoned that its phenotype is probably due to
a defect in splicing. To investigate this question, we tested
splicing efficiency in two selected Saccharomyces cerevisiae
intron-containing genes, DBP2 and ECM33, which are
commonly used as splicing reporters. However, RT-PCR
assays of the RNAs of these two genes revealed no splicing
defect in the FFΔ3–4 mutant (data not shown).

Discussion
Although the composition of the the yeast U1 snRNP has
been known for a decade [12,13] the precise interactions
among its components and their atomic structure remain
elusive. Equally puzzling is the fact that the human U1
snRNP is commonly assumed to consist of 10 proteins
(U1-A, U1-70K and U1-C plus seven Lsm proteins (in
addition to the snRNAs) [9,27] while its yeast counterpart
contains up to 18 proteins [12,13]. In both species U1-A,
U1-70K and U1-C (Mud1, Snp1, Yhc1 in yeast) form a
complex that is associated with the heptameric Sm protein
ring complex [9]. Except for the Mud1-Snp1-Yhc1 core
complex and the Lsm ring little information is available
about the structure of the yeast U1 snRNP. Most complex
purification studies find large complexes of 10 to 51 pro-
teins when individual U1 components are used as baits
[10,28]. Here we suggest that Prp40, Luc7, and Snu71
form a subcomplex within the U1 snRNP. Surprisingly,
we did not find any other interaction within the U1snRNP
when we systematically tested all pairwise interactions
among the known 10 subunits, suggesting that limitations
of the yeast two-hybrid system or the requirement for
RNA prevented detection of other interactions. Many of
the U1snRNP associated proteins contain RNA binding
domains and are known to bind RNA directly [29,30].
Interestingly, we did not find another known Prp40 inter-
actor, Clf1 [24], in our initial genome-wide yeast two-
hybrid screen. However, subsequent verification of the
pertinent array position revealed that the Clf1 ORF was
missing from our prey array.

We showed that the FF1 domain of Prp40 is responsible
for the binding of Luc7 whereas the region FF1-3 binds to
full length Snu71 as well as the C-terminal fragment
Snu71-I. The fragment containing FF2-3 binds to full-
length Snu71 but not to Snu71-I. This suggests that bind-
ing may be cooperative or that regions outside Snu71-I
present additional binding sites. However, the single
binding site indicates that there is no other strong site
besides the N421DVHY motif. In any case, our results con-
firm that different FF domains clearly have different bind-
ing specificities with the FF1-2 region being the business
end of Prp40 [17].

The ability of FF domains to bind non-phosphorylated
peptides refutes the suggestion that the FF domain is an
exclusively phospho-peptide binding domain.

The two FF domain binding sites identified by our study
in Luc 7 and Snu71 do not share any obvious similarity
with previously identified binding motifs (Table 1). Sev-
eral studies showed that FF domains bind to phospho-
peptides, usually the phospho-CTD of RNA polymerase II
(Table 1). Similarly, several FF domains of CA150 were
shown to bind to acidic peptides. However, while this
may be true for Prp40 FF domains 2–3 the FF1 domain of
this protein appears to prefer basic residues. This finding
is in agreement with the acidic nature of Prp40-FF1 (bind-
ing basic peptides) and the basic FF2 and FF3 domains
which bind the rather acidic Snu71 peptide. Unfortu-
nately there is still too little information to derive reliable
consensus binding sites. Similarly, available 3D structures
of FF domains bound with their cognant ligands are not
sufficient to derive rules that allow us to predict binding
sites more generally. Clearly, more structural work is
required to understand the binding mode of FF domains.

Murphy et al. [31] have investigated the functional role of
several motifs in Prp40, including putative RNA-binding
domains they call "region 1" and "region 2" both of which
overlap with the first two FF domains (Figure 4C). While
deletion of region 1 is lethal, deletion of region 2 resulted
in a slow growth phenotype. However, Murphy et al. were
not able to show RNA-binding of these "domains" and
thus it is likely that their similarity to RNA-binding
domains is spurious. The fact that they overlap signifi-
cantly with the FF domains supports that notion. Never-
theless, deletion of region 2 partially deletes the FF2
domain. It is possible that such a truncated FF2 domains
has some residual binding activity and thus shows only a
"slow growth" defect. We have not tested whether this
partial deletion of FF2 still binds to Snu71 but given the
non-essential role of Snu71, binding may not be abso-
lutely required for U1 function.
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Only Prp40 FF domains 1–2 are essential in vivoFigure 4
Only Prp40 FF domains 1–2 are essential in vivo. A, A strain with Protein A fused to the full-length Prp40 (FF1-4ProA) 
shows no signficant difference in growth to the wild-type. FF domain deletions from the C-terminus by insertion of Protein A 
into the respective FF domain locus resulted in a viable mutant that lacks FF domains 3–4. However, replacements of FF 
domains 4 or 3–4 could not be found and thus may be lethal. B, The mutant lacking FF domains 3–4 is viable but shows a 
growth defect compared to the wild-type controls. C, Summary of domains and functional motifs in Prp40. Numbers are 
amino acid sequence positions. Regions 1 and 2 are similar to RNA-binding domains. These and three other motifs, NES 1 and 
2 (nuclear export signals) and an arginine-rich motif (ARM) have been deleted [Δ] or mutated by Murphy et al. [31]. The phe-
notypes of these mutations are shown below (ts = temperature-sensitive). Note that the predicted coiled-coil region indicated 
as bar between FF2 and FF3 in A is not shown here as it has no known function.
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The role of Snu71 remains elusive too. Newo et al. [32]
have analyzed the U1 snRNP of Schizosaccharomyces pombe
and found no homolog of Snu71 although homologs of
Prp40 and Luc7 were clearly present. However, they spec-
ulate that Usp107p may be a functional homolog of
Snu71, given its similar size and the presence of a PWI
domain in Usp107p.

While Prp40 does not bind to a conserved sequence in
Snu71, the binding site in Luc7 is highly conserved. As a
more rigorous confirmation of the specificity of the Prp40
and other FF domains, it would be interesting to compare
the peptide-binding specificities of all available domains
with their cognate peptides under comparable conditions.
Similarly, the in vivo relevance of the interactions
described here can only be elucidated with detailed struc-
tural analysis and mutation of the interaction epitopes in
vivo.

For a detailed understanding of U1 protein function, crys-
tal structures of the individual proteins or, preferably, the
whole complex, will be required. The structure would also
tell us whether the FF domains of Prp40 bind to 3-dimen-
sional epitopes or two linear motifs. Since membrane-
bound peptides as used in this study may not be folded as
in the native protein, they may produce artifactual results.

This study should also provide new insight into the
important role of Prp40 as a mediator between transcrip-
tion and splicing. While Prp40 has been consistently
shown to be a component of the U1 snRNP, its precise
role in splicing remains unclear. Similarly, the mechanis-
tic details of its involvement in transcription require addi-
tional data. Several publications indicate a direct
connection between specific steps of transcription and
mRNA-processing in eukaryotes, i. e. co-transcriptional
mRNA-processing [33-35].

Conclusion
Our results show that FF domains 1 and 2 are critical for
Prp40 function. However, while FF domains 3 and 4 are

dispensable, they convey a considerable growth disadvan-
tage when absent. We conclude that they also assist with
spliceosome assembly or activity. This is also reflected by
the evolutionary conservation of 4 or, sometimes 5, FF
domains in homologous proteins. We suggest that our
observations may also help to characterize the U1 snRNP
structurally and suggest that previous crystallization
efforts failed because Luc7 and Snu71 were expressed
individually and crystallization attempts included only
such individual proteins. We speculate that Luc7 may be
crystallized together with Prp40 or fragments thereof. Fur-
ther studies are required to derive general rules for physi-
ological FF domain functions and activities.

Methods
2.1. Plasmids and Strains
pOBD2 and pOAD [36] low-copy plasmids were used to
express fusions of the Gal4-Gal4 activation domain (AD)
(preys) and Gal4 DNA binding domain (DBD) (baits).

Construction of the Gal4DBD-ORF fusions was performed
by means of PCR and recombination [37] as described in
[25]. Transformation was performed using the lithium
acetate procedure [38]. Bait constructs were transformed
into yeast strain PJ69-4α [36] and prey constructs into
PJ69-4a [39].

For Y2H mapping experiments FF domain constructs from
Prp40 as baits and from Snu71 as prey were produced
using the following primers (forward primers shown as
codons): ForwardFF1: A TTC CAG CTG ACC ACC ATG
AGA AGG ACT AAA GAA GAA, ReverseFF1: GA TCC CCG
GGA ATT GCC ATG TGT TTC ATT GTG TTC CT,
ForwardFF2: A TTC CAG CTG ACC ACC ATG AAG GAA
CAC AAT GAA ACA, ReverseFF2: GAT CCC CGG GAA TTG
CCA TGG ATT CTT TCT GAG TGT CG, ForwardFF3: A TTC
CAG CTG ACC ACC ATG AAT TAT ACC AGA GAC CGT,
ReverseFF3: ATC CCC GGG AAT TGC CAT GAC GTC TGT
TGG GCT ATT G, ForwardFF4: A TTC CAG CTG ACC ACC
ATG CAA AAT GAG CGT AGG ATA, ReverseFF4: GAT CCC
CGG GAA TTG CCA TGC GCT TTC GGC AGT CGG,

Table 1: Binding sites of FF domains

FF protein FF domain Target protein Binding site Ref.

Prp40 FF1 Clf1 GSTNIDILDLEELREYQRRKRTEYEGYLKRNRLD [17]
Prp40 WW+FF1-2 RNAPII-CTD YpSPTpSPS [22]***
Prp40 FF1 Luc7 φ[FHL] × [KR] × [GHL] = FLGKIHLG This study
Prp40 FF2-3 Snu71 NDVHY This study
CA150 FF1,2,3** Tat-SF1 (D/E)2/5-F/W/Y-(D/E)2/5 * [23,21]
CA150 FF5 RNAP-CTD YpSPTpSPS [20]
FBP11 FF1 RNAP-CTD YpSPTpSPS [16]
Rho-GAP FF1-4 TFII-I (N-terminal 90 amino acids) [15]

* i.e., two of the five residues either preceding or following an aromatic residue are negatively charged glutamic acid or asparagine.
** each of the FF1, FF2, and FF3 bound with similar affinity.
*** this interaction required both WW and FF domains. Neither of them was able to bind to the CTD by itself (pS indicates phospho-Serine).
Page 8 of 11
(page number not for citation purposes)



BMC Biochemistry 2008, 9:29 http://www.biomedcentral.com/1471-2091/9/29
ForwardSnu71II: AA TTC CAG CTG ACC ACC ATG TCC
GAG AGA AGC GCG GCA GAG, ReverseSnu71II: GAT
CCC CGG GAA TTG CCA TGC TCT GCC GCG CTT CTC
TCG GA, ForwardSnu71I: AA TTC CAG CTG ACC ACC
ATG GCC AAA GGG AGC GCC AAT ACA, ReverseSnu71I:
GAT CCC CGG GAA TTG CCA TGT GTA TTG GCG CTC
CCT TTG GC. PCR reactions using these primers resulted
in the following Gal4-DBD and/or GST fusion constructs
(all based on wildtype sequences from http://www.yeast
genome.org): amino acids 1-583 (Prp40wt), 1-75
(Prp40WW1-2); 129–560 (Prp40FF1-4); 129–428
(Prp40FF1-3); 129–264 (Prp40FF1-2); 196–428
(Prp40FF2-3); 351–560 (Prp40FF3-4); 129–201
(Prp40FF1); 196–264 (Prp40FF2); 351–428 (Prp40FF3);
487–560 (Prp40FF4); 1–620 (Snu71 wt); 530–620
(Snu71I); 329–536 (Snu71 II).

Luc7 constructs were created using existing restriction sites
within its open reading frame (Luc7I: StuI, DNA
position429; Luc7II, EcoRI DNA position 274).

Constructs expressing the Gal4DBD- and Gal4AD-ORF
fusions were verified by DNA sequencing.

2.2. Two-Hybrid Screens, Retests and Mapping 
Experiments
An array containing most of the ~6,000 Saccharomyces cer-
evisiae ORFs expressed as Gal4AD fusions was used to
screen for interacting proteins. Haploid transformants
expressing either a full-length Gal4DBD-ORF fusion pro-
tein or a Gal4DBD-FF domain construct fusion protein
were mated to the array [36]. The resulting diploids were
pinned with a Biomek 2000 Laboratory Automation
Workstation (Beckman-Coulter, Fullerton, CA) onto
selective media as described in detail in [36]. Positive prey
clones from a first-round screen were re-arrayed and also
tested in single tests for reproducibility. Deletion con-
structs for the mapping yeast two-hybrid tests were
obtained either by PCR or by digestion with compatible
restriction enzymes (see section 2.1). These constructs
were then tested as preys with the existing Prp40 FF bait
constructs using standard Y2H protocols as they were used
for the genome-wide screens.

2.3. Protein Expression
GST and GST-Prp40 constructs were expressed in
Escherichia coli BL21 and purified using glutathione
Sepharose 4B beads (Amersham Pharmacia, Uppsala,
Sweden) as described in [40].

2.4. GST pull down assays
Modified primers for Luc7 and Snu71, containing a T7
promotor and a eukaryotic translation initiation site were
used to generate PCR products for use with the TNT™-cou-

pled reticulocyte system in the presence of [35S] methio-
nine (Promega, Madison, WI). PCR primers were as
follows: Luc7p Forward: GGATCCTAATACGACTCAC-
TATAG GGAAACAGCCACCATGTCAACTATGTCAACGC
CT, Luc7p Reverse: CTA CAC AAA GCG TCT TCC GGG;
Snu71p Forward: ATCCTAATACGACTCACTATAG GGAA
ACAGCCACCATGAGGGAT ATTGTATTTGTA, Snu71p
Reverse: TCA GGT CCC CAA GCG AAA TTC.

GST-FF domain fusion proteins or GST alone were cou-
pled to glutathione-Sepharose beads (Amersham Pharma-
cia Biotech) and incubated with 4 μl of in vitro-translated
proteins in pulldown buffer (40 mM Hepes pH 8.0; 2.5
mM MgCl2; 0,1 mM EDTA; 1 mM DTT; 1 mM PMSF; 0,2%
Triton-X-100; 100 mM NaCl) for 2 h at 4°C under rota-
tion. Beads with bound proteins were washed six times
(for 10 min under rotation at 4°C) with pulldown buffer
and proteins harvested in SDS-sample buffer, separated by
SDS-PAGE, and analyzed by autoradiography.

2.5. Peptide SPOT synthesis
Cellulose membrane-bound peptides were prepared
according to standard SPOT synthesis protocols [41,42]
using an automated Spot synthesizer (MultiPep, Intavis
AG Bioanalytical Instruments, Köln, Germany); Fmoc
derivatives of amino-acids for peptide synthesis were
obtained from Novabiochem. The generated peptide
arrays were synthesized on amino-PEG membranes
(Intavis AG Bioanalytical Instruments, Köln, Germany) or
β-alanine membranes. β-alanine membranes were pro-
duced using hardened low ash whatman 50 paper incu-
bated over night with Fmoc-β-alanine. After Fmoc-
deprotection membranes were spotted with Fmoc-β-
alanine-Opfp (Bachem AG, Switzerland) as spacer.

2.6. SPOT Membrane Probing
After activation of the membranes with methanol the
membrane-bound peptide arrays were blocked 3 h in
blocking buffer (2% milk powder and 5% sucrose in Tris-
buffered saline (TBS), pH 8.0) and then incubated over-
night at 4°C with 10 μg/ml purified GST fusion protein or
GST control protein in blocking buffer. After washing
three times with TBS the membranes were probed with
anti-GST antibody (G1160; Sigma-Aldrich, München,
Germany) in blocking buffer with 0.2% Tween for 3 h.
The membrane was washed three times with TBS and then
incubated for 1.5 h with horseradish-peroxidase-coupled
anti-mouse mAb (Sigma-Aldrich; München, Germany) in
blocking buffer with 0.2% Tween followed by washing
three times with TBS. Analysis and quantification of pep-
tide-bound GST fusion proteins were carried out using
ECL (Amersham Biosciences, Freiburg, Germany).
QRALAKDLIVPRRP is known to bind GST and was used as
a positive control.
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2.7. In vivo FF-domain Deletion
In order to delete the FF domain in vivo PCR products were
created containing a protein A/kanMX6 cassette from the
pYM8-plasmid [43] which were recombined into the
Prp40 locus where they replaced the endogenous FF
domains as shown in Fig. 4A. PCR-constructs were trans-
formed into the PJ69-4α strain and plated on geniticin
plates [200 mg/l] for selection. Genomic DNA was pre-
pared from geniticin positive colonies and the correct
deletion verified by PCR. PCR-products for recombina-
tion were prepared using the following primers:
Prp40ProA: Forward, GCG TCA AAA AAG AGG CAT TTA
ACT CCG GCT GTG GAA TTG GAC TAT CGT ACG CTG
CAG GTC GAC, Reverse, ATA ATT TAT ATA ATG ATT AAC
AAG ATA GAG GTC GAC ACG TCA GAA ATC GAT GAA
TTC GAG CTC G; ΔFF4ProA: Forward, AGA AAC GAA
AAG ATA CAA CAG AAA CTC CAA AAT GAG CGT AGG
ATA CGT ACG CTG CAG GTC GAC Reverse, ATA ATT TAT
ATA ATG ATT AAC AAG ATA GAG GTC GAC ACG TCA
GAA ATC GAT GAA TTC GAG CTC G; ΔFF3-4ProA: For-
ward, CTT CAA AAC AAA CTA AAT GAG CTC CGA CTG
CGC AAT TAT ACC AGA CGT ACG CTG CAG GTC GAC;
Reverse, ATA ATT TAT ATA ATG ATT AAC AAG ATA GAG
GTC GAC ACG TCA GAA ATC GAT GAA TTC GAG CTC G;
ΔFF2-4ProA: Forward, CTT TCC AAT AGA TCA GCC GAT
CAA CTT CTT AAG GAA CAC AAT GAA CGT ACG CTG
CAG GTC GAC, Reverse, ATA ATT TAT ATA ATG ATT AAC
AAG ATA GAG GTC GAC ACG TCA GAA ATC GAT GAA
TTC GAG CTC G. Control primers for the verification of
successful recombination: Forward, GGA CGA ACT ATA
AAC GAG (Prp40 specific bp 322–339); Reverse, GTC GAC
CTG CAG CGT ACG (pYM8 specific S3R primer [43].

To determine the growth rate of the FF deletion strains cell
densities (OD600) were normalized and then measured
hourly over 540 min.
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