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Abstract
Background: Histone deacetylase (HDAC) proteins are associated with cell proliferation,
differentiation, apoptosis, and cancer. Specifically, HDAC1 is linked with cell growth, a hallmark of
cancer formation. HDAC1 is a phosphoprotein and phosphorylation at S421 and S423 promotes
HDAC1 enzymatic activity and protein association. While single and double point mutants of
HDAC1 at S421 and S423 appear functionally similar, the evidence suggests that HDAC1 is
phosphorylated simultaneously at both S421 and S423 in vivo. Additional experiments are necessary
to probe the role of double phosphorylation of HDAC1 at S421 and S423.

Results: To characterize HDAC1 phosphorylation at S421 and S423, limited proteolysis of
HDAC1 was performed for the first time. HDAC1 degraded without production of discrete
fragments. By performing concentration-dependent proteolysis, HDAC1 double point mutants
with disrupted phosphorylation at S421 and S423 displayed different trypsin sensitivities compared
to wild type HDAC1. Unexpectedly, HDAC1 single point mutants with disrupted phosphorylation
at either S421 or S423 demonstrated protease sensitivity similar to the wild type HDAC1.

Conclusion: Concentration-dependent proteolysis experiments provide evidence that
phosphorylation of S421 and S423 individually contribute to HDAC1 function. In addition, the
limited proteolysis experiments support a model where associated proteins promote HDAC1
enzymatic activity, reinforcing the importance of protein interactions in HDAC1 structure and
function. Finally, because HDAC1 does not display distinct regions of protease sensitivity, the
proteolysis studies suggest that HDAC1 comprises inter-related structural regions.

Background
Histone deacetylase (HDAC) proteins play a critical role
in regulating gene expression in vivo by altering the acces-
sibility of genomic DNA to transcription factors. Specifi-
cally, HDAC proteins remove the acetyl group of acetyl-
lysine residues on histones, which can result in nucleo-
somal remodelling [1]. Due to their governing role in
gene expression, HDAC proteins are associated with a
variety of cellular events, including cell cycle regulation,

cell proliferation, differentiation and cancer development
[2-5]. In fact, HDAC inhibitors reduce tumour growth in
various human tissues, including lung, stomach, breast,
and prostrate [6]. As a result, small molecule inhibitors of
HDAC enzymatic activity are currently being exploited as
potential cancer drugs [7-9].

The study of HDAC proteins in cancer is complicated by
the identification of eleven human HDAC proteins that
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are sensitive to small molecule inhibitors [10]. Although
it is unclear which of the eleven HDAC proteins is
involved in cancer formation, the activity of HDAC1 has
been linked to cell proliferation, a hallmark of cancer. Par-
ticularly, mammalian cells with knock down of HDAC1
expression using siRNA were antiproliferative [11]. While
the knock out mouse of HDAC1 was embryonic lethal,
the resulting stem cells displayed altered cell growth [12].
Mouse cells overexpressing HDAC1 demonstrated a
lengthening of G2 and M phases and reduced growth rate
[13]. Therefore, the reported data implicate HDAC1 in cell
cycle regulation and cell proliferation.

To further elucidate HDAC1 function in vivo, HDAC1
associated proteins have been characterized by biochemi-
cal purification. HDAC1 exists in at least three distinct
biochemical complexes. The NuRD complex includes a
core complex comprised of HDAC1, HDAC2, retinoblast-
oma associated protein 46 (RbAp46), RbAp48, as well as
Mi2, methyl CpG binding domain 3 (MBD3) and metas-
tasis associated protein 2 (MTA2) [14-16]. The fact that
the NuRD complex contains MTA2, which is associated
with cancer metastasis, provides further evidence that
HDAC1 may play a role in cancer development. The Sin3
complex comprises the core complex as well as mSin3,
Sin3 associated protein 18 (SAP18), SAP30, and SDS3
[17-21]. Finally, the CoREST complex is less well charac-
terized and contains HDAC1, HDAC2, CoREST, and p110
(KIAA0601) [22,23]. The presence of associated proteins
promotes the enzymatic activity of HDAC1. Specifically,
coexpression of MTA2 of the NuRD complex with the core
HDAC1-containing complex resulted in augmented
deacetylase activity [16]. Most recently, knockdown of
SDS3 of the Sin3 complex resulted in reduced deacetylase
activity of HDAC1 immunoprecipitates in mammalian
cells [20].

HDAC1 protein association and activity are also pro-
moted by phosphorylation. HDAC1 is phosphorylated at
S421 and S423 [24], although additional phosphorylated
sites are also possible [25,26]. Single or double mutation
of S421 and S423 disrupted HDAC1 interactions with
members of the Sin3, NuRD, and CoREST complexes,
including RbAp46, mSin3A, MTA2, and CoREST [24]. In
addition, single or double mutation of S421 and S423
reduced deacetylase activity. While single or double
mutants of HDAC1 appear functionally similar, the evi-
dence suggests that HDAC1 is phosphorylated at both
S421 and S423 in vivo [24,25]. Additional experiments are
necessary to reveal the functional significance of double
phosphorylation of HDAC1.

To explore the role of phosphorylation in promoting
HDAC1 activity and protein association, we have per-
formed a limited trypsin proteolysis of HDAC1. Because

the conformation and/or protein associations of HDAC1
are likely related to proteolysis sensitivity, we hypothe-
sized that concentration-dependent trypsin digestion will
change as a function of phosphorylation state. We found
that HDAC1 mutants lacking phosphorylation at both
S421 and S423 displayed different proteolysis sensitivities
than wild type HDAC1. Interestingly, HDAC1 mutants
lacking only one phosphorylated residue displayed prote-
olysis sensitivities similar to wild type HDAC1. The lim-
ited proteolysis study suggests that phosphorylation of
S421 and S423 individually contribute to HDAC1 func-
tion.

Results
Limited trypsin digestion of endogenous HDAC1
As a first step towards characterizing the protease sensitiv-
ity of HDAC1, endogenous HDAC1 from human Jurkat
cells was immunoprecipitated and incubated with
increasing concentrations of trypsin (0.000625-0.01 μg/
μL). The trypsin digestion products were separated using
SDS-PAGE and HDAC1 was visualized using an anti-
HDAC1 antibody recognizing the C-terminus (Figure 1A).
For clarity, the lowest concentration of trypsin (0.000625
μg/μL) is indicated as 1X and, accordingly, the highest
concentration (0.01 μg/μL) as 16X. A trypsin concentra-
tion of 80X (0.5 μg/μL) was also used to digest HDAC1
completely, as a positive control. Endogenous HDAC1
showed concentration-dependent cleavage by trypsin
(Figure 1A). The concentration of trypsin required to
degrade roughly half of the full-length protein was 4X
(0.0025 μg/μL). Interestingly, western blot analysis did
not show a protease fragmentation pattern with endog-
enous HDAC1; only full length HDAC1 was observed
with all concentrations of trypsin. Because the HDAC1
antibody only recognizes the C-terminus of the protein,
we also analyzed the reactions products by silver staining.
Again, no protein fragments associated with HDAC1 deg-
radation were observed (data not shown). Additional con-
ditions including varying temperatures (4°C and 25°C)
and varying reaction times (10 seconds to 30 minutes)
were tested with only full length HDAC1 observed (data
not shown). The results suggest that HDAC1 is digested by
trypsin to short peptide fragments, which are not identifi-
able by gel methods.

To support the observation that HDAC1 degrades to short
peptide fragments in the presence of trypsin, the predicted
sites of HDAC1 trypsin cleavage were determined using
the program Peptide Cutter [27]. As shown in Figure 2, 62
trypsin cleavage sites were identified with the largest likely
fragments to be 32 amino acids with a mass of roughly 3.8
kDa [see Additional File 1]. The predicted tryptic map of
HDAC1 corroborates the proteolysis results suggesting
that HDAC1 degrades to small peptide fragments in the
presence of trypsin.
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Limited proteolysis of endogenous and transiently expressed HDAC1Figure 1
Limited proteolysis of endogenous and transiently expressed HDAC1. Immunoprecipitated endogenous HDAC1 (A) 
and transiently expressed HDAC1-Flag (HDAC1-F) (B) were incubated at room temperature with increasing concentrations of 
trypsin (0.000625 μg/μL- 1X, 0.00125 μg/μL- 2X, 0.0025 μg/μL- 4X, 0.005 μg/μL- 8X, 0.01 μg/μL- 16X, and 0.05 μg/μL- 80X). 
After separation by SDS-PAGE, the proteins were visualized with either anti-HDAC1 antibody in case of endogenous HDAC1 
or anti-Flag antibody in case of transiently expressed HDAC1-F. (C) A graph showing percentage of full length endogenous 
HDAC1 (white) and transiently expressed HDAC1-Flag (black) remaining after exposure to different concentrations of trypsin. 
The curves were generated by least squares fit to a single exponential. (D) A plot displaying the deacetylase activity of HDAC1-
F after incubation with an increasing concentration of trypsin. The inset displays the relationship between deacetylase activity 
and percentage of full length HDAC1-F remaining after exposure to increasing concentrations of trypsin and the data was fit to 
a linear equation.
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Limited trypsin digestion of transiently expressed HDAC1
In preparation for testing HDAC1 phosphorylation site
mutants, we first validated the use of transiently expressed
HDAC1-Flag fusion protein (HDAC1-F) in concentration-
dependent proteolysis experiments. Immunoprecipitated
HDAC1-F was treated with increasing concentrations of
trypsin, as described for endogenous HDAC1. Like endog-
enous HDAC1, roughly half of the protein was degraded
with 4X concentration of trypsin (Figure 1B). Therefore,
the data revealed that HDAC1-F demonstrated similar
concentration-dependent cleavage by trypsin as endog-
enous HDAC1.

To allow a more rigorous comparison of the concentra-
tion-dependent cleavage, the amount of full-length pro-
tein present after incubation with each concentration of
trypsin was quantified and compared to the amount of
protein present in the absence of trypsin (Figure 1C). Con-
sistent with visual observations, 44 ± 14% of endogenous
HDAC1 and 42 ± 9.3% of expressed HDAC1-F remained
in the presence of 4X trypsin [see Additional File 2]. The
quantitative analysis reinforces the conclusion that
endogenous HDAC1 and expressed HDAC1-F display
similar concentration-dependent degradation by trypsin.

Like with endogenous HDAC1, no proteolytic fragments
of HDAC1-F were observed in these studies (Figure 1B),
consistent with the production of small peptides upon
degradation. To corroborate the possibility that complete
HDAC1 degradation occurs with proteolysis, we assessed
the enzymatic activity of HDAC1 after incubation with
increasing concentrations of trypsin (Figure 1D). Like the
proteolysis experiments, HDAC1 enzymatic activity was
reduced in a trypsin concentration-dependent manner.
The linear relationship between trypsin proteolysis and
enzymatic activity (see inset in Figure 1D) is consistent
with the scenario that HDAC1 degrades to small peptide
fragments in the presence of trypsin.

Limited trypsin digests of HDAC1 phosphorylation site 
double mutants
To probe the influence of HDAC1 phosphorylation on
trypsin sensitivities, two HDAC1 mutants with disrupted
phosphorylation at S421 and S423 were tested- the
HDAC1 S421A/S423A double mutant lacks the serine
hydroxyl groups that are phosphorylated and the HDAC1
E424A/E426A double mutant lacks the CK2 recognition
sequence required for phosphorylation in vivo. Previous
work showed that the HDAC1 S421A/S423A and HDAC1

Predicted trypsin cleavage sites of HDAC1Figure 2
Predicted trypsin cleavage sites of HDAC1. The primary sequence of HDAC1 (accession number U50079) is shown with 
arrows indicating the trypsin cleavage sites predicted using the Peptide Cutter program [27]. More information on the 
sequences, lengths, masses, and cleavage probabilities of the predicted peptide fragments are available [see Additional File 1].

↓↓↓ ↓ ↓ ↓ ↓↓ ↓ ↓

MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRKMEIYRPHKAN 60

↓ ↓ ↓ ↓ ↓ ↓

AEEMTKYHSDDYIKFLRSIRPDNMSEYSKQMQRFNVGEDCPVFDGLFEFCQLSTGGSVAS 120

↓ ↓ ↓↓ ↓ ↓

AVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLAILELLKYHQRVLYIDIDIHHG 180

↓ ↓ ↓ ↓ ↓ ↓

DGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKGKYYAVNYPLRDGIDDESYEAI 240

↓ ↓ ↓ ↓ ↓ ↓

FKPVMSKVMEMFQPSAVVLQCGSDSLSGDRLGCFNLTIKGHAKCVEFVKSFNLPMLMLGG 300

↓ ↓ ↓

GGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGPDFKLHISPSNMTNQNTNEYLE 360

↓ ↓ ↓ ↓ ↓↓ ↓↓

KIKQRLFENLRMLPHAPGVQMQAIPEDAIPEESGDEDEDDPDKRISICSSDKRIACEEEF 420

↓↓ ↓↓ ↓↓ ↓ ↓ ↓ ↓↓ ↓ ↓ ↓ ↓ ↓ ↓

SDSEEEGEGGRKNSSNFKKAKRVKTEDEKEKDPEEKKEVTEEEKTKEEKPEAKGVKEEVKLA 482
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E424A/E426A mutants behave similarly; both mutants
are unable to interact with RbAp48, Sin3A, MTA2, and
CoREST and are catalytically inactive, demonstrating 22.9
± 3.1 % and 30.9 ± 1.6 % of wild type activity, respectively
[24].

Transiently expressed HDAC1 S421A/S423A and HDAC1
E424A/E426A mutants were incubated with increasing
concentrations of trypsin, as described for the HDAC1-F
(Figure 3A and 3B). Quantification of the western blot
analysis (Figure 3C) revealed that HDAC1 S421A/S423A
and HDAC1 E424A/E426A mutants display 17 ± 7.6 %

and 14 ± 7.2 % of full-length protein, respectively, in the
presence of 4X trypsin [see Additional File 2]. The experi-
ments demonstrated that the HDAC1 S421A/S423A and
HDAC1 E424A/E426A mutant proteins display equiva-
lent concentration-dependent trypsin digestion, consist-
ent with previous results showing that they maintain
similar deacetylase activity and complex forming ability
[24].

While the HDAC1 S421A/S423A and HDAC1 E424A/
E426A mutants maintain similar trypsin sensitivities, they
demonstrated significant differences in concentration-

Limited proteolysis of HDAC1 S421A/S423A and HDAC1 E424A/E426A mutantsFigure 3
Limited proteolysis of HDAC1 S421A/S423A and HDAC1 E424A/E426A mutants. Immunoprecipitated HDAC1 
S421A/S423A (A) and HDAC1 E424A/E426A (B) mutants were incubated with increasing concentrations of trypsin (see Figure 
1), separated by SDS-PAGE, and visualized with anti-Flag antibody. The faster migrating proteins present in the absence of 
trypsin (0X) are derived from the anti-Flag-bound solid phase used for immunoprecipitation [see Additional File 3]. (C) A graph 
showing percentage of full length S421A/S423A mutant (red) and E424A/E426A mutant (orange) remaining after exposure to 
different concentrations of trypsin. The data with wild type HDAC1-F (black- Figure 1) is also included for comparison. The 
curves were generated by least squares fit to a single exponential.
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dependent trypsin digestion compared to wild-type
HDAC1 (Figure 3C). Quantification revealed that 42 ± 9.3
% of wild-type protein compared with 17 ± 7.6 % of
HDAC1 S421A/S423A and 14 ± 7.2 % of HDAC1 E424A/
E426A mutants was observed in the presence of 4X trypsin
[see Additional File 2]. Even more dramatically, the
HDAC1 S421A/S423A and HDAC1 E424A/E426A mutant
proteins were sensitive to degradation with 1X trypsin (48
± 6.0 % and 55 ± 6.4 %, respectively), whereas the wild-
type HDAC1 was almost completely insensitive to degra-
dation at that concentration (93 ± 1.3 %). The data show
that the HDAC1 S421A/S423A and HDAC1 E424A/
E426A mutants are more sensitive to trypsin digestion
than wild-type HDAC1.

Limited trypsin digests of HDAC1 phosphorylation site 
single point mutants
Similar to the HDAC1 S421A/S423A double mutant, sin-
gle point HDAC1 S421A and HDAC1 S423A mutants are
catalytically inactive, demonstrating 33 ± 4.2 % and 25 ±
2.9 % activity compared to wild type HDAC1, respectively
[24]. In addition, HDAC1 S421A/S423A, S421A and
S423A mutants similarly lack the ability to bind RbAp48,
mSin3, MTA2, and CoREST. Because the single and dou-
ble point mutants display similar activities and protein
associations, the expectation was that the S421A and
S423A single point mutants would demonstrate similar
trypsin sensitivities compared to the HDAC1 S421A/
S423A double mutant.

Concentration-dependent trypsin digestion was per-
formed with transiently expressed HDAC1 S421A and
HDAC1 S423A, as described previously (Figure 4A and
4B). Quantitative analysis of the western blots (Figure 4C)
indicated that both mutants displayed similar amounts of
full-length protein at every concentration of trypsin [see
Additional File 2]. Whereas HDAC1 S421A and HDAC1
S423A displayed nearly identical concentration-depend-
ent trypsin digestion sensitivities, they demonstrated sig-
nificantly different trypsin sensitivities compared to the
HDAC1 S421A/S423A double mutant. While the HDAC1
S421A/S423A double mutant was almost completely
degraded at 4X trypsin concentration (17 ± 7.6 %), the
HDAC1 S421A and S423A mutants were only partially
degraded (36 ± 2.9 % and 38 ± 3.7 %, respectively).
Instead, the S421A and S423A single point mutants dis-
played similar trypsin sensitivities to the wild type
HDAC1-F protein. For example, while HDAC1-F was par-
tially degraded (42 ± 9.3 %) with 4X trypsin concentra-
tion, the HDAC1 S421A and HDAC1 S423A single point
mutants were also partially degraded (36 ± 2.9 % and 38
± 3.7 %, respectively). In fact, only with 1X trypsin con-
centration did HDAC1 S421A and HDAC1 S423A single
point mutants show differences compared with wild-type
HDAC1; the single point mutants displayed 77 ± 2.8% or

70 ± 7.0% full length protein, which is roughly of an inter-
mediate degradation compared to wild-type HDAC1 (93
± 1.3 %) or HDAC1 S421A/S423A (48 ± 6 %). Therefore,
the comparison revealed an unexpected similarity
between the trypsin sensitivities of wild type HDAC1-F
and the HDAC1 S421A and HDAC1 S423A single point
mutants.

Limited trypsin digests of HDAC1 kinase consensus site 
single point mutants
To reinforce the observations with HDAC1 S421A and
HDAC1 S423A single point mutants, the CK2 consensus
site single point mutant HDAC1 E424A and HDAC1
E426A were also studied. Like HDAC1 S421A and HDAC1
S423A, mutation of E424 and E426 resulted in reduced
enzymatic activity, demonstrating 79 ± 5.4 % and 48 ± 7.2
% of wild type activity, respectively [24]. Unlike HDAC1
S421A and HDAC1 S423A, the HDAC1 E424A and
HDAC1 E426A mutants bind to RbAp48 and mSin3,
although only E424A binds with comparable affinity to
the wild-type HDAC1 protein. Because HDAC1 S421A
and HDAC1 S423A mutants demonstrated similar trypsin
sensitivities to wild type HDAC1, the expectation was that
HDAC1 E424A and HDAC1 E426E would also.

Concentration-dependent trypsin digestion was per-
formed with the HDAC1 E424A and HDAC1 E426A sin-
gle point mutant (Figure 5A and 5B) and western blot
analysis indicated that both mutants degraded similarly to
HDAC1-F (Figure 5C) [see Additional Files 2]. While
HDAC1-F was partially degraded (42 ± 9.3 %) with 4X
trypsin concentration, the HDAC1 E424A and HDAC1
E426A single point mutants were also partially degraded
(56 ± 17% and 35 ± 6.1%, respectively). While E424A was
degraded to the same extent as wild-type HDAC1 at 1X
trypsin (93 ± 1.3 % versus 91 ± 2.5 %, respectively),
E426A displayed slightly reduced digestion compared to
wild-type HDAC1 (84 ± 1.2 %). The data with HDAC1
E424A and HDAC1 E426A are consistent with studies of
HDAC1 S4231A and HDAC1 S423A, demonstrating sim-
ilar trypsin sensitivities compared with wild type HDAC1.

Limited trypsin digestion of H141A HDAC1 mutant
In addition to probing the phosphorylation-dependent
changes in HDAC1 conformations, we explored the use of
limited proteolysis to assess the conformational changes
of a HDAC1 catalytic site mutant. Crystallography of
human HDAC8 and two HDAC homologs from bacteria
(HDLP and HDAH) have implicated a metal ion along
with two conserved histidines in HDAC catalytic activity
[28-31]. Consistent with the proposal, mutation of H141
results in loss of HDAC1 deacetylase activity [32].
Although the H141A mutant is catalytically inactive, it
maintains full binding to RbAp48 and mSin3. To deter-
mine if trypsin sensitivities are altered by catalytic amino
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Limited proteolysis of HDAC1 S421A and HDAC1 S423A mutantsFigure 4
Limited proteolysis of HDAC1 S421A and HDAC1 S423A mutants. Immunoprecipitated HDAC1 S421A (A) and 
HDAC1 S423A (B) mutants were incubated with increasing concentrations of trypsin (see Figure 1), separated by SDS-PAGE, 
and visualized with anti-Flag antibody. The faster migrating proteins present in the absence of trypsin (0X) are derived from the 
anti-Flag-bound solid phase used for immunoprecipitation [see Additional File 3]. (C) A graph showing percentage of full-length 
HDAC1 S421A (green) and HDAC1 S423A (blue) mutants remaining after exposure to different concentrations of trypsin. 
The data with wild type HDAC1-F (black- Figure 1) and HDAC1 S421A/S423A (red- Figure 2) proteins are also included for 
comparison. The curves were generated by least squares fit to a single exponential.
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Limited proteolysis of HDAC1 E424A and HDAC1 E426A mutantsFigure 5
Limited proteolysis of HDAC1 E424A and HDAC1 E426A mutants. Immunoprecipitated HDAC1 E424A (A) and 
HDAC1 E426A (B) mutants were incubated with increasing concentrations of trypsin (see Figure 1), separated by SDS-PAGE, 
and visualized with anti-Flag antibody. The faster migrating proteins present in the absence of trypsin (0X) are derived from the 
anti-Flag-bound solid phase used for immunoprecipitation [see Additional File 3]. (C) A graph showing percentage of full length 
HDAC1 E424A (green) and HDAC1 E426A (blue) mutants remaining after exposure to different concentrations of trypsin. 
The data with wild type HDAC1-F (black- Figure 1) and HDAC1 E424A/E426A (orange- Figure 2) proteins are also included 
for comparison. The curves were generated by least squares fit to a single exponential.
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acid mutation, we tested the concentration-dependent
trypsin digestion of the HDAC1 H141A mutant (Figure
6A). The trypsin degradation of HDAC1 H141A was iden-
tical to that of HDAC1-F at every concentration of trypsin
tested (Figure 6B) [see Additional Files 2]. The data indi-
cate that trypsin sensitivities are not altered by catalytic
amino acid mutation, which influence enzymatic activity
but not protein associations.

Discussion
Structural insight into human HDAC1 is lacking. NMR,
CD, or crystallographic characterization have been chal-
lenging due to the low quantities and contamination with
associated proteins typical of mammalian cell-derived
HDAC1 [33]. In addition, most HDAC proteins, includ-
ing HDAC1, cannot be isolated in active form from bacte-
ria [33]. Unlike other methods, limited proteolysis assays
allow analysis of HDAC1 from mammalian sources
because low concentrations and the presence of associated
proteins are tolerated [34]. In addition, HDAC1 isolated
from mammalian cells can be probed in its natural state
in vivo, including its various states of post-translational
modification and activity. Limited proteolysis has been
used previously to distinguish structurally accessible from
inaccessible conformations of proteins, revealing function
domains [35,36], and to assess protein stability [37].
Despite the utility of the method, no report to date has
explored the limited proteolysis of HDAC1.

We sought to investigate limited proteolysis as a means of
characterizing HDAC1 structure. As a first step, we per-
formed digestions with increasing concentrations of
trypsin using HDAC1 isolated from human Jurkat cells.
While HDAC1 was degraded by trypsin, no evidence of
distinct fragments was detected under any reaction condi-
tions (Figure 1A). Presumably, HDAC1 degraded to small
peptides undetectable by gel electrophoresis (Figure 2).
Because HDAC1 degraded without production of discrete
fragments, the data suggest that the HDAC1 structure
lacks distinct domains of protease-resistance. Rather, the
data are consistent with a model where HDAC1 comprises
inter-related regions that cooperate to maintain overall
structure and function. This model is corroborated by pre-
vious work documenting the temperature sensitivity of
HDAC1 activity [33].

Previous studies with human SIRT3 and maize Zm-Hda1
demonstrated that post-translational proteolysis gave rise
to enzymatically active forms of the proteins [38,39].
Because HDAC1 proteolysis by trypsin did not produce
discrete fragments, the results suggest that HDAC1 is not
subjected to the same proteolytic processing as SIRT3 and
Zm-Hda1. However, it is possible that alternative pro-
teases are required for HDAC1 proteolysis in vivo.

Because no discrete protease fragments were detected with
HDAC1, we focused the studies on analyzing the concen-
tration-dependent degradation of HDAC1 by trypsin [37].
Since HDAC1 phosphorylation promotes HDAC1 enzy-
matic activity and protein associations [24], we studied
HDAC1 mutants lacking phosphorylation sites. We
hypothesized that unphosphorylated HDAC1 mutants
would give different concentration-dependent degrada-
tion than wild-type HDAC1 if interaction with associated
proteins or enzymatic inactivity govern proteolysis sus-
ceptibility. We found that HDAC1 phosphorylation site
mutants were significantly more sensitive to trypsin diges-
tion compared to wild type HDAC1 (Figure 3), suggesting
that HDAC1 trypsin sensitivity correlates with the interac-
tion with associated proteins, enzymatic activity, or both.

To decipher whether sensitivity to trypsin correlates with
HDAC1 enzymatic activity and/or protein association, we
performed trypsin digestion experiments with a variety of
single point mutants- S421A, S423A, E424A, E426A, and
H141A. Because each of the single point mutants has a
differing enzymatic activity and propensity to interact
with associated protein, the combined data was expected
to reveal the factors governing trypsin sensitivities. Multi-
ple experiments indicate that the trypsin sensitivity of
HDAC1 is not correlated with enzymatic activity. While
all single point mutants are less active than wild-type
HDAC1, they all demonstrated similar trypsin digestion
to wild-type HDAC1. Most significantly, the HDAC1
H141A mutant is inactive due to mutation of a catalytic
histidine, yet it displays identical trypsin digestion com-
pared to wild-type HDAC1 (Figure 6). Therefore, the data
suggest that the heightened susceptibility of the HDAC1
S421A/S423A mutant to trypsin digestion does not corre-
late with enzymatic inactivity.

The experiments with the single point mutants are also
helpful in illuminating the role of protein association in
governing trypsin digestion susceptibilities. Unlike wild
type HDAC1, all of the phosphorylation site single point
mutants have reduced ability to interact with RbAp48,
mSin3, MTA2, and CoREST. Consequently, if associations
with RbAp48, mSin3, MTA2, and CoREST dictate trypsin
susceptibility, the expectation was that the wild type and
single point mutants would display significantly different
sensitivities to trypsin. The data indicated that the single
point mutants displayed trypsin sensitivities similar to
wild type HDAC1-F, with only a modest difference with
1X concentration of trypsin. While differences in trypsin
sensitivities at 1X concentration may result from associa-
tion with RbAp48, mSin3, MTA2, and CoREST, the data
indicate that vulnerability to trypsin digestion is inde-
pendent of RbAp48, mSin3, MTA2, and CoREST at high
concentrations of trypsin.
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Limited proteolysis of HDAC1 H141A mutantFigure 6
Limited proteolysis of HDAC1 H141A mutant. Immunoprecipitated HDAC1 H141A mutant (A) was incubated with 
increasing concentrations of trypsin (see Figure 1), separated by SDS-PAGE, and visualized with anti-Flag antibody. The faster 
migrating proteins present in the absence of trypsin (0X) are derived from the anti-Flag-bound solid phase used for immuno-
precipitation [see Additional File 3]. (B) A graph showing percentage of full-length HDAC1 H141A mutant (white) remaining 
after exposure to different concentrations of trypsin. The data with wild type HDAC1-F (black- Figure 1) are also included for 
comparison. The curves were generated by least squares fit to a single exponential.

A

B.

%
 f

ul
l l

en
gt

h 
pr

ot
ei

n

0

20

40

60

80

100

0X 80X 1X 2X 4X 8X 16X

H141A

HDAC1-F

H141A

Trypsin concentration
4X 8X 16X1X



BMC Biochemistry 2006, 7:22 http://www.biomedcentral.com/1471-2091/7/22
Previous work found that binding with Sin3, RbAp48,
MTA2, and CoREST was lost whether HDAC1 was singly
or doubly mutated at S421 and S423, conjuring the possi-
bility that phosphorylation at either site is functionally
redundant in vivo [24]. If singly and doubly phosphor-
ylated HDAC1 proteins are functionally indistinguisha-
ble, the expectation was that their trypsin sensitivities
would be similar as well. The data indicated that the single
and double phosphorylation site mutants demonstrated
significant differences in proteolysis sensitivities at all
trypsin concentration tested. The fact that the single and
double point mutants differ in their protease susceptibili-
ties suggests a model where each phosphorylation event
individually contributes to HDAC1 activity. Because
HDAC1 associates in vivo with multiple proteins, it is
attractive to hypothesize that unphosphorylated HDAC
(double mutant) is distinguished from singly phosphor-
ylated HDAC1 via differing protein interactions. For
example, in addition to interaction with proteins in the
Sin3, NuRD, and CoREST complexes [16,18,20,40,41],
HDAC1 directly interacts with transcription factors, such
as retinoblastoma protein [42], estrogen receptor alpha
[43], and Sp1 [44]. While additional studies are necessary
to unambiguously identify the phosphorylation-depend-
ent events that correlate with proteolysis susceptibility,
the limited proteolysis studies provide evidence that sin-
gly phosphorylated HDAC1 is distinguishable from
unphosphorylated HDAC1.

The limited proteolysis provides a secondary assay to con-
firm that mutagenesis does not result in the global insta-
bility and unfolding of the protein [24]. For example, the
limited proteolysis demonstrated that HDAC1 S421A and
HDAC1 S423A maintain similar sensitivities to proteoly-
sis compared to wild type HDAC1 even though they are
catalytically inactive and unable to interact with associ-
ated proteins. Therefore, limited proteolysis analysis pro-
vides a general assay for assessing HDAC1 protein
stability.

Previous work showed that phosphorylation at S421 and
S423 promotes the full enzymatic activity and protein
associations of HDAC1. Explaining these results, two non-
mutually exclusive hypotheses were proposed [24,45].
The first hypothesis suggests that phosphorylation at S421
and S423 causes a conformational change, which pro-
motes protein association and augments enzymatic activ-
ity. The second hypothesis posits that HDAC1-dependent
phosphorylation promotes protein associations, which
results in augmented enzymatic activity. While it is for-
mally possible that phosphorylation may result in subtle
structural rearrangements undetectable by limited prote-
olysis, the data are consistent with the possibility that pro-
tein associations promote HDAC1 enzymatic activity. A
model of associated protein-promoted HDAC1 activity is

strengthened by experiments where coexpression of MTA2
with the HDAC1/HDAC2 core complex resulted in aug-
mented deacetylase activity [16]. Therefore, the results
with limited proteolysis reinforce the close relationship
between protein association and enzymatic activity in reg-
ulating HDAC1 function.

Conclusion
Limited proteolysis experiments were performed with
HDAC1 for the first time. Because discrete HDAC1 frag-
ments were not observed upon degradation with trypsin,
the data suggest that HDAC1 contains a contiguous struc-
ture cooperating to maintain activity. Concentration-
dependent proteolysis with HDAC1 phosphorylation site
mutants demonstrated that trypsin sensitivities vary with
extent of phosphorylation. As a result, these studies pro-
vide the first evidence that phosphorylation of S421 or
S423 individually contribute to HDAC1 function. Finally,
the data are consistent with a model where HDAC1 cata-
lytic activity is promoted by protein associations.

Methods
Cell culture
T-Ag Jurkat cells were grown in RPMI containing phenol
red indicator, 10% fetal bovine serum and antibiotic
(Gibco). To express HDAC1-F or HDAC1 mutants, 40
million cells were electroporated in indicator-free RPMI
with 20 μg of the HDAC1 expression construct, as
described [24]. After 48 hours of recovery, the cells were
washed with PBS buffer (0.02 M sodium phosphate buffer
with 0.15 M sodium chloride, pH 7.4) and stored at -
80°C.

Limited trypsin proteolysis
40 million cells were lysed with 1 mL of cold jurkat lysis
buffer (JLB: 50 mM Tris (pH 8), 150 mM NaCl, 10% glyc-
erol and 0.5% Triton X-100) in presence of protease
inhibitor cocktail (Calbiochem) and 1 mM PMSF. To
immunoprecipitate endogenous HDAC1, the lysate was
incubated with 1 μL/mL of monoclonal antibody against
HDAC1 (Sigma) for 2 hours prior to addition of 40 μL of
protein A agarose beads (Sigma). To immunoprecipitate
HDAC1-F or HDAC1 mutants, the lysates were incubated
with 40 μL of anti-Flag antibody conjugated agarose beads
(Sigma) for one hour. The immunoprecipitated HDAC
proteins were equally divided into eight reactions, each of
which was incubated either in the absence or presence of
increasing concentrations of sequencing grade trypsin
(Sigma- 0.00063-0.010 mg/mL or 12–190 units/mL) for
10 seconds at room temperature. Fully digested HDAC1
was generated by incubating with 0.05 mg/mL trypsin for
30 minutes at room temperature. The reactions were
quenched with SDS loading buffer (0.1 M Tris pH 8.9, 4%
SDS, 2 mM EDTA, 0.1% bromophenol blue, and 20%
glycerol). After addition of 1 μL of β-mercaptoethanol, the
Page 11 of 14
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reaction products were separated by SDS-PAGE on a 15%
gel. The separated proteins were visualized either by silver
staining or western blotting with anti-HDAC1 (Sigma) or
anti-Flag (Sigma) antibodies.

Quantification of trypsin digestion
To create quantitative histograms of the extent of trypsin
digestion, the amount of full length HDAC1 protein
detected in the western blot was quantified on a Storm
860 Phosphoimager using the program IQMac version
1.2. Briefly, the intensity of each protein band was deter-
mined after subtraction of background signal due to non-
specific antibody staining of the membrane. Due to the
inhomogeneity of nonspecific antibody staining, a visual
inspection of each background correction was necessary
to ensure accuracy. To quantify the extent of trypsin diges-
tion, the intensity of full length HDAC1 incubated in the
presence of trypsin was divided by the intensity of HDAC1
in the absence of trypsin to yield the percentage of full-
length protein. The percentage of full-length protein was
plotted versus concentration of trypsin for each tested pro-
tein to produce the histogram. The data was fit to a single
exponential decay curve [37]. The data represent an aver-
age of three independent trials [see Additional Files 3, 4,
5, 6, 7], with standard error indicated with error bars.

HDAC assays
HDAC1-F was immunoprecipitated and digested with
increasing concentrations of trypsin as described. In this
case, to maintain HDAC1 in a native form for subsequent
HDAC assays, the reactions were quenched by addition of
trypsin inhibitor Type I-S (Sigma) in a 1:1 (w/w) ratio
with trypsin enzyme. Lower concentrations of trypsin
were used in these reactions (0.00007.8-0.0050 mg/mL or
1.4–90 units/mL) because the trypsin inhibitor did not
immediately stop the reaction, as was the case with SDS
quenching. The HDAC assays were described previously
where [3H]-acetate incorporated histones (approximately
0.2 μg or 500 dpm) were incubated with the digested pro-
tein for 1 hour at 37°C in 50 μL HD buffer (20 mM Tris,
pH 8.0, 150 mM NaCl, and 10 % glycerol) [24]. An equal
volume of stop solution (0.5 M HCl and 0.2 M acetic acid)
was added to quench the reaction and deacetylase activity
was determined by scintillation counting of the ethyl-ace-
tate-soluble [3H]-acetic acid.
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