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Abstract

Background: Jerboa (Jaculus orientalis) is a deep hibernating rodent native to subdesert highlands.
During hibernation, a high level of ketone bodies i.e. acetoacetate (AcAc) and D-3-hydroxybutyrate
(BOH) are produced in liver, which are used in brain as energetic fuel. These compounds are
bioconverted by mitochondrial D-3-hydroxybutyrate dehydrogenase (BDH) E.C. |.1.1.30. Here we
report, the function and the expression of BDH in terms of catalytic activities, kinetic parameters,
levels of protein and mRNA in both tissues i.e brain and liver, in relation to the hibernating process.

Results: We found that: 1/ In euthemic jerboa the specific activity in liver is 2.4- and 6.4- fold higher
than in brain, respectively for AcAc reduction and for BOH oxidation. The same differences were
found in the hibernation state. 2/ In euthermic jerboa, the Michaelis constants, Ky BOH and Ky
NAD" are different in liver and in brain while Ky AcAc, Ky NADH and the dissociation constants,
Ko NAD*and Ky NADH are similar. 3/ During prehibernating state, as compared to euthermic
state, the liver BDH activity is reduced by half, while kinetic constants are strongly increased except
Kp NAD*. 4/ During hibernating state, BDH activity is significantly enhanced, moreover, kinetic
constants (Ky and Kp) are strongly modified as compared to the euthermic state; i.e. Ky NAD* in
liver and Ky AcAc in brain decrease 5 and 3 times respectively, while Ky NADH in brain strongly
increases up to 5.6 fold. 5/ Both protein content and mRNA level of BDH remain unchanged during
the cold adaptation process.

Conclusions: These results cumulatively explained and are consistent with the existence of two
BDH enzymatic forms in the liver and the brain. The apoenzyme would be subjected to differential
conformational folding depending on the hibernation state. This regulation could be a result of
either post-translational modifications and/or a modification of the mitochondrial membrane state,
taking into account that BDH activity is phospholipid-dependent.
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Background

During winter period several mammals can survive inhos-
pitable conditions by a series of metabolic adaptations
which lead to hibernation. Jerboa (Jaculus orientalis), a
model for deep hibernation, is a small rodent herbivore
native to subdesert highlands in Morocco [1,2]. During
cold period, jerboa accumulates lipid reserves as white
adipose mass developing a seasonal obesity. During
hibernation, the body temperature of jerboa decreases to
around 9.8 + 0.7°C and the heart frequency drops to 9.3
+ 1.5 beats/min in comparison with the active euthermic
animal which exhibits a 37°C body temperature with a
cardiac rhythm around 300 beats per minute [2]. Hiber-
nation is characterized by a slow metabolic rate [3] and
the survival of the hibernating animal depends on the
accumulated lipids during the prehibernating state.

In a previous work [4], we have reported that during
hibernation phases: 1/ SDS-PAGE of the mitochondrial
protein pattern profile is modified; 2/ the yield of isolated
mitochondria is increasead; 3/ the plasmatic parameters
were subject to variations i.e. a decrease in the level of cir-
culating glucose and triglycerides while the levels of D-3-
hydroxybutyrate (BOH) (ketoneamia) and of urea
increase; 4/ the activities of peroxisomal palmitoyl-CoA
oxidase and urate oxidase and mitochondrial palmitoyl-
CoA dehydrogenase are enhanced.

Other reports have shown that during hibernation, there
is specific involvement of glycolytic enzymes: phosphof-
ructokinase, hexokinase, pyruvate kinase [5], and glyceral-
dehyde-3-phosphate dehydrogenase [6,7], and of a
lipogenic enzyme: the glycerol-3-phosphate dehydroge-
nase [8].

Lehninger et al. [9] reported that, the ketosis resulting
from lipolysis increased release of fatty acids in liver and
led to the production of ketone bodies as the consequence
of a massive f3-oxidation rate. Consequently proved by the
increase in BOH level and the decrease in triglyceride level
in the plasma [4]. Ketone bodies are produced by the liver
in order to serve as energetic substrates compensating the
lack of carbohydrates in tissues [10]. Changes of carbohy-
drate composition were previously observed during hiber-
nation [11]. Indeed, during hibernation, carbohydrates
are in short supply and lipid stocks become the main ener-
getic source for the cells.

Consequently, the concept of balance in the levels of
ketone bodies in the cell in different tissues appears evi-
dent during hibernation. In eukaryotic cells the ketone
bodies are represented mainly by BOH and acetoacetate
(AcAc). Those compounds are interconverted in mito-
chondria by D-3-hydroxybutyrate dehydrogenase (BDH)
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(E.C.1.1.1.30) which was previosuly described by Wake-
man and Dakin [12] in dog liver.

In eukaryotic cells, BDH is a mitochondrial inner mem-
brane enzyme slightly associated with the electron respi-
ratory chain showing its active site oriented toward
matricial side [13-17].

The catalytic activity of BDH is lecithin-dependent
[18,19]. Phospholipids induce a slight structural change
of the active site permitting the enzymatic reaction [20].
As it has been reported [21], liver BDH catalyses the trans-
formation of AcAc into BOH in the presence of NADH +
H+. Then, BOH is transported via the blood fluid to
peripheral organs, especially brain, heart and kidney.
Once in the extra-hepatic tissues, in the presence of NAD+,
BOH is converted into AcAc, which is used after its conver-
sion to acetoacetyl-CoA, either as energetic fuel to pro-
duce ATP via the respiratory chain, or in the synthesis of
fatty acids.

The catalytic mechanism of inter-conversion in liver and
in peripheral tissues has been previously reported by our
group [22]. Furthermore, it has been shown that acetoac-
etate is the main energetic donor in the new born animals
[23] and during starvation [10]. On the other hand, it has
been pointed out that the increasing BOH level in the
plasma is the main source of energetic fuel for the brain
metabolism and prevents brain damages during neonatal
hypoxia/ischaemia [24]. Thus, there is a close relationship
between ketone bodies, energy and lipid metabolism.
Since obesity is characterized by the strong increase in the
body lipid stock, the ketone body production could be
enhanced in this metabolic situation.

We present here a study on the effect of cold exposure and
hibernation of jerboa on the mitochondrial BDH func-
tion and expression level in liver, a ketone bodies produc-
ing tissue, and in brain, the main organ/tissue of ketone
bodies as energetic source. The differences in BDH activi-
ties and kinetic parameters are coherent with the existence
of two BDH enzymatic forms expressed in liver and in
brain.

Results

Catalytic expression of BDH during hibernation process
BDH activity was measured at 37°C in different physio-
logical states in liver, a ketone bodies producing tissue,
and in brain, a main user tissue of ketone bodies as ener-
getic fuel.

From the results presented in Table 1 it appears that : 1/
the enzymatic activities of BDH at 37°C (forward and
reverse directions) are higher in liver than in brain tissue;
2/in liver or brain, the cold acclimatization
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Table I: Variation of BDH activity in both directions (oxidation of BDH and reduction of AcAc) in brain and liver measured at 37°C or
9°C under different physiological conditions. Values are given in nmol/min/mg mitochondrial protein in mean % standard deviation of
at least two experiments with 4 different animals for each condition at *P < 0.05 as compared to the active (A) or at **P < 0.05 as

compared to the prehibernator (PH) calculated by ANOVA test.

Tissue Reaction Temperature Euthermic Prehibernating Prehibernating + ciprofibrate Hibernating
°C (active)
Liver AcAc — BOH 37°C 30.65+ 1.77 14.86 + 0.8 (x 0.48)* 19.1 + 2.4 (x 0.62)* (x 1.28)** 42.87 £ 5.9 (x |.4)* (x 2.88)**
BOH — AcAc 37°C 33.11 £4.02 18.8 + 1.4 (x 0.57)* 27.33 +£ 2.7 (% 0.82)* (x |.45)** 44.1 £2 (x 1.33)* (x 2.33)*
BOH — AcAc 9°C 2.08 +0.24 - - 6.84 + 1.05 (x 3.29)*
Brain AcAc — BOH 37°C 1264 £ 1.9 10.33 £ 1.22 (x 0.82)* 8.19 £ 1.76 (% 0.65)* (x 0.79) ** 16.11 £0.72 (x 1.27)* (x 1.56) **
BOH — AcAc 37°C 5.14+0.16 4.35 £ 0.48 (x 0.85)* 3.05 £ 0.32 (x 0.59)* (x 0.70) ** 6.11 £0.64 (x 1.19)* (x |.4) **
BOH — AcAc 9°C 2.54 £ 0.59 - - 3.33+£0.06 (x 1.31)*
ratio ratio ratio ratio
Liver / Brain BOH — AcAc 37°C 6.4 43 89 72
BOH — AcAc 9°C 0.8 - - 2.0

Table 2: Variation of BDH activity ratios of both directions of reaction in liver and brain under different physiological conditionn (active,
prehibernating, ciprofibrate — treated prehibernating and hibernating jerboas).

Ratio Tissue Euthermic (active) Prehibernating Prehibernating + Hibernating
ciprofibrate
Activity AcAc — BOH at 37°C Liver 0.92 0.79 0.70 0.97
Activity BOH — AcAc at 37°C Brain 2.45 237 2.68 2.63
Activity BOH — AcAc at 37°C Liver 15.92 - - 6.44
Activity BOH — AcAc at 9°C Brain 2.02 - - 1.83

(prehibernating) leads to a decrease of BDH-specific activ-
ity in both directions, whereas BDH activity is stimulated
by combination of cold and food deprivation (hibernat-
ing) in both liver and brain, although with a higher effect
measured in liver; 3/different kinetic properties of BDH
from liver or brain revealed by the ratio of tissue-depend-
ent specific activities strongly decreases from 37°Cto 9°C
in euthermic as well as in hibernating conditions. By com-
paring the activity ratio measured at 37°C and at 9°C for
BOH oxidation, we note an 8 and 3 fold decrease respec-
tively in euthermic and hibernating animals. In Table 2,
the ratio indicates that the BDH specific activity in the
liver is higher in the reverse direction (production of
BOH) than the forward reaction (oxidation of BOH),
while it is the opposite in the brain. On the other hand, in
term of temperature dependency the BDH activity follows
the Arrhenuis' law in liver of euthermic animals (doubling
of activity every 10°C increase) while it does not, at all in
brain and just partially in liver of hibernating jerboa
(Table 2).

On the other hand, the BDH activity was measured at
37°C for BOH oxidation and for BOH formation in liver
and in brain of ciprofibrate-treated jerboa. During the pre-
hibernating state comparatively to the euthermic animals,

we observed a decrease in this activity by 20 to 40 %
depending on the tissues (Table 1). Ciprofibrate treat-
ment of hibernating animal increases the ratio value (liver
versus brain) of BDH activity by 40 % in the BOH oxida-
tion direction comparatively to euthermics (Table 1).

Kinetic parameters of BDH during hibernation process
Kinetic parameters were determined in liver and in brain
of jerboa at different states of cold adaptation (Table 3).
In euthermic animals we find that the K, BOH and the K},
NAD+ are 3 and 5 respectively fold higher in the brain
than in the liver, while there is no significant difference
between both tissues for K,AcAc, K,NADH, K,NAD+and
KpNADH. In the liver, during prehibernation, we
observed an increase in the kinetic parameters except for
KpNAD+ which decreased slightly, while in the brain no
significant change was seen.

During hibernation, in the liver, a 5-fold decrease in
KpNAD+ and a slight increase in K;BOH were observed.
Regarding other parameters, there is a weak decrease
(from 18 % to 27%) except for K AcAc. In the brain, there
is a decrease in Ky, of 34 % for BOH and for NAD+ while
the decrease is twice and 3 times greater for NADH and
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Table 3: Variation of BDH kinetic parameters (Ky and Kp) for BOH, NAD*, AcAc and NADH calculated from brain and liver enzymes
activities under different physiological conditions. Values are given in mean % standard deviation of at least two experiments with 4
different animals for each condition at *P < 0.05 as compared to the active (A) or at **P < 0.05 as compared to the prehibernating (PH)

calculated by ANOVA test.

BOH NAD* AcAc NADH, H*
Tissue Physiological states Ky (mM) Ky (mM) Kp (mM) Ky (mM) Ky (mM) Kp (mM)
Liver Euthermic(active) 0.633 £ 0.05 0.238 £ 0.015 2+0.18 0.150 £ 0.01 0.074 + 0.005 0.15 £ 0.0l
Prehibernating 1.06 £ 0.1 (x 1.67)*  0.55+0.04 1.33 £ 0.1 (x 6.8)* 1.026 + 0.28 + 0.4 +0.03 (x 2.66)*
(x 2.3)* 0.008 (x 6.8)* 0.018 (x 3.8)*
Hibernating 0.944 £ 0.07 0.174 £0.014 0.444 £ 0.035 0.146 £ 0.01 0.058 + 0.005 0.12 £ 0.01 (x 0.8)*
(x 1.49)* (x 0.73)* (x 0.22)* (x 0.97) (x 0.78)*
Brain Euthermic(active) 2£0.15 1.187 £ 0.1 1.9+0.1 0.216 £ 0.018 0.076 + 0.005 0.16 £0.01
Prehibernating 22502 1.35+0.1 1.72 £ 0.1 0.287 £ 0.02 0.066 + 0.004 0.2 £0.0175 (x 1.25)*
(x 1.25) (x 1.13) (x0.9) (x 1.33)* (x 0.87)*
Hibernating 1.33+0.12 0.787 £0.06  3.11 £0.25 (x |.64)* 0.067 £ 0.004 0.035 + 0.002 0.9 £0.06
(x 0.66)* (x 0.66)* (x 0.30)* (x 0.46)* (x 5.62)*

AcAc respectively. Meanwhile, the K for NAD+ and for
NADH increase 1.6 and 5.6 fold respectively.

Western blotting

The BDH expression at protein level was determined by
western blotting using an anti-BDH polyclonal antibody.
Figure 1 showed no significant variation of BDH levels
during prehibernation or hibernation states in both liver
and brain. Treatment of jerboa with ciprofibrate during
cold exposure does not modify the BDH protein levels
either comparatively to euthermic or to prehibernating
animals.

Northern blotting

The analysis of BDH mRNA level by northern blotting for
different hibernation periods showed no significant varia-
tion in both brain and hepatic tissues (Figure 2). Treat-
ment of jerboa with ciprofibrate during prehibernation
phase does not change the level of BDH mRNA as com-
pared to euthermic and prehibernating animals.

Discussion

In euthermic animals, the level of BDH activity is higher
in liver, a ketone body producing tissue, than in brain, a
ketone body consuming tissue, whatever the direction of
the reaction (i.e. oxidation of BOH to AcAc or the forma-
tion of BOH from AcAc). In parallel, the difference in the
activity levels is directly related to the kinetic constants
(Ky,) for all the substrates (i.e. BOH, AcAC, NAD* and
NADH) between liver and brain. These results can be
explained through the existence of two enzymatic forms
of BDH in the two tissues. This is corroborated by a prec-
edent work in which we proposed a molecular mecha-
nism of BDH catalysis in the liver and in the peripheral
tissues based on BDH conformational change [22]. Such
a hypothesis has also been reported earlier in rat model,
for the liver and the brain BDH [35] as well as in the gold-

fish model, Carassius auratus for liver and kidney BDH
[36].

In the liver, the BDH activity is similar in both directions
of the reaction. This can be related to the perfect reversi-
bility of the reaction and allows this tissue to maintain
both BOH and AcAc availability at a steady-state level nec-
essary for homeostasis.

In the brain of jerboa, our results show that the direction
of BDH activity reaction is favoured in the reduction of
AcAc. This is unexpected because in the rat brain the direc-
tion of the reaction is forwarded in the direction of BOH
oxidation. Such BOH from liver is providing AcAc and
NADH as energetic sources in the brain tissue [37]. Taking
into account the body temperature of hibernating jerboa
drops to around 9°C [4], the measured BDH activity at
lowered temperature in the direction of BOH oxidation is
similar in both tissues. Thus showing that the response of
BDH activity to low temperatures is different in liver and
brain. Indeed, the comparison of activities measured at
37°C or at 9°C show a stronger decrease in BDH activity
in liver (16 fold) than in brain (2 fold). All these results
support our hypothesis about the existence of two BDH
enzymatic forms at least one in the brain and another one
in the liver.

During prehibernating period, in which jerboa accumu-
lates fatty acids in adipose tissue leading to a decrease in
circulating triglycerides and in ketone body rates [4], the
slowdown of BDH activity in liver and in brain seems to
be due to the decrease in the production of its substrate
(i.e. BOH or AcAc). Furthermore, cold exposure seems to
favour the liver enzymatic reaction in the direction of
BOH oxidation resulting in AcAc production. Such
increased AcAc level could allow both, i,e supply brain
with this energetic compound and further constitution of
an AcAc pool for lipogenesis. This is corroborated by the
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Figure |

western blotting analysis of BDH in brain and liver of euthermic active (A), prehibernating (PH), prehibernating ciprofibrate-
treated (PHC) or hibernating jerboa (H). The solubilised proteins were subjected to 12.5 % SDS-polyacylamide gel electro-
phoresis and transferred on nitrocellulose. BDH was detected with anti-rat liver BDH polyclonal antibody.

change in the affinity of the enzyme which is increased for
NAD+and decreased for NADH. Meanwhile, in the brain,
cold exposure had no effect on the reaction direction as
indicated by the measured affinity of the enzyme for
NAD+* and NADH. On the other hand, cold adaptation
during prehibernation had no effect on the synthesis rate
of BDH protein and mRNA as analyzed by western and
northern blotting respectively. These results seem to indi-
cate that cold exposure induces regulation of BDH at the
catalytic level in the liver but not in the brain. During
hibernation, jerboa uses fatty acid stock to survive leading
to an important production of ketone bodies [4]. Thus the
increase in BDH activity compared to euthermic animals,
particularly in the liver at 9°C, seems to provide the
ketone bodies during this phase.

Furthermore, the comparison of BDH activities measured
at 37°C and at 9°C in both brain and liver tissues indi-
cates that there is a change in the liver BDH conformation
when the animal enters hibernation. Indeed, the Q,,
(defined as the ratio of enzymatic activity rate at the given
temperature [t] to a 10°C higher temperature [t+10]) of
BDH in euthermic animals is largely higher than 2, while

in hibernating jerboa the Q,, is near 2. This conforma-
tional changing process is strengthened by the increase in
the affinity of the enzyme and for its coenzymes during
hibernation. In the brain, hibernation has no effect on the
activity variations between 37°C and 9°C compared to
euthermia. However, the BDH affinity for its coenzymes
strongly decrease at the lower temperatures. This latter
effect is also in agreement with the conformational mod-
ifications of BDH between the two physiological states
(active euthermic and hibernating). Moreover, analysis of
both mRNA and protein levels by northern and western
blotting respectively does not reveal any variations.

Ciprofibrate is a hypolipemic agent, which to a large
extent increases the degradation of lipids in both mito-
chondria and in peroxisomes [38]. Previously we
reported, that BDH activity is inhibited in euthermic
jerboa liver after treatment with ciprofibrate while this
activity is still unchanged in peripheral organs[39].

In the present work we have studied BDH expression in
jerboa treated with ciprofibrate during prehibernating
state where animal accumulates lipid reserves. By contrast
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Figure 2

northern blotting analysis of BDH mRNAs. Total RNA (10 pg) was isolated from brain and liver tissues of euthermic active (A),
prehibernating (PH), prehibernating ciprofibrate-treated (PHC) or hibernating jerboa (H) and subjected to northern blotting
analysis using rat liver BDH cDNA probe. Standardization was made with 28 S and 18 S ribosomal RNAs.

to our previous work about euthermic jerboa [39], treat-
ment with ciprofibrate during prehibernation signifi-
cantly stimulates BDH activity in liver while it slightly
inhibits this activity in brain. Furthermore, the treatment
with ciprofibrate has no effect on both mRNA and protein
BDH level.

We showed that ciprofibrate treatment of prehibernating
jerboa decreases significantly the level of circulating trig-
lycerides. Such a decrease is lower than the one recorded
during hibernation [4]. One could suggest, in the light of
our finding, that the fatty acid degradation in liver during
hibernation and during the ciprofibrate treatment of pre-
hibernating jerboa provokes a change in mitochondrial
membrane lipid composition. These modifications would
stimulate the BDH activity in both cases, knowing that the
plasmatic BOH level strongly increases during hiberna-
tion but not after ciprofibrate treatment of prehibernating
jerboa [4]. This leads us to propose that the treatment
with ciprofibrate of prehibernating jerboa inhibits the
release of ketone bodies by the liver into the blood. So, by

such a transport inhibition of ketone body efflux from the
liver, the brain is deprived of those energetic compounds
leading to lower BDH activity. Elsewhere, Kabine et al [40]
observe that the starvation-induced hibernation provokes
the rapid death of all animals treated during prehiberna-
tion with ciprofibrate.

In conclusion, our results reveal 1/ the presence of two
distincts enzymatic forms of BDH in liver and brain tis-
sues. This has been also reported for the hepatic glutamate
dehydrogenase in Richardson's ground squirrel [41], and
2/ that BDH from liver and from brain is subject to differ-
ential regulation depending on the hibernation state. This
regulation could be a result of post-translational
modifications and/or a modifications of mitochondrial
membrane state, knowing that the BDH activity is
phospholipid-dependent. The local environment of the
protein may result in an important kinetic change. A
change of physical properties of the mitochondrial mem-
brane related to the hibernation process has been also
reported in ground squirrel [42]. Furthermore, post-trans-
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lational regulation during hibernation was reported for
glyceraldehyde-3-phosphate dehydrogenase in jerboa
(Jaculus orientalis) [6,7]. A further cloning of BDH gene(s)
will put forward the properties and the role of this
enzyme. Indeed, the cloning experiment would allow to
establish if there are two genes, two mRNA splice variants
and/or self specific post-translational modifications.

Methods

Animals

Male young adult jerboa (Jaculus orientalis) 4 to 6 months
old (110-140 g body weight) were captured in the sub-
desert of eastern Morocco. They were acclimatized in the
laboratory for 3 weeks at 22 + 2°C with food (rabbit diet
biscuits; Aliments UAR-Villemoisson, Orge, France) and
salad. The circadian rhythm was 10 h light and 14 h dark.
For pre-hibernating and hibernating states, a group of ani-
mals (4 per cage) was kept with food in a cold room (6°C)
for 3 weeks. This group was called the pre-hibernator
group (PH). A second group was kept under the same con-
ditions as PH, except that the food contained ciprofibrate
(3 mg/kg body weight/day), and was called the ciprofi-
brate-treated pre-hibernator group (PHC). The third
group was housed as PH, and at the end of 3 weeks of the
prehibernation period, the food was removed leading to
hibernation after 24 to 36 hours, so called group (H).
These animals were sacrificed on the sixth day of hiberna-
tion. The reference group corresponds to euthermic active
animals (A). Animals were used in agreemant with laws in
both Morocco and France and animal experiments were
approved by the moroccan veterinary office of laboratory
animal welfare.

Liver and brain mitochondria isolation

The jerboas were decapitated and liver and brain were rap-
idly removed for mitochondrial preparation according to
Fleischer et al [25]. Protein content was estimated with
Bio-Rad assay according to Bradford [26] using bovine
serum albumin as standard.

Enzymatic activity measurement

BDH activity was measured as described in [27] at 37°C
by following NADH production at 340 nm (¢ = 6.22 x 103
M-1.cm 1) using a cold disrupted mitochondrial prepara-
tion (0.2 mg of protein/assay) in a medium containing 10
mM potassium phosphate, 0.5 mM EDTA, 1.27 % redis-
tilled ethanol, 0.3 mM dithiothreitol at pH 7.35, in the
presence of 2 mM NAD+and 2.5 pg rotenone (final addi-
tion to prevent NADH re-oxidation by the respiratory
chain). The assay was started by the addition of D,L-3-
hydroxybutyrate to 10 mM final concentration. Kinetic
parameters of BDH were determined by measuring the
initial rate at 37°C in a standard medium as above
described for the oxidation of D-3-hydroxybutyrate using
the following coenzyme/substrate concentrations:

http://www.biomedcentral.com/1471-2091/4/11

[NAD*] = 0.2, 0.4, 0.8 or 2 mM ; [D,L-3-hydroxybutyrate]
=1.25,2.5,4.5 or 10 mM or in the same medium without
NAD+and rotenone and in the presence of varying acetoa-
cetate concentration (0.2, 0.4, 0.6 or 0.8 mM) and NADH
concentrations (0.2, 0.4, 0.6 or 0.8 mM). In all cases, the
NacCl concentration of the medium was adjusted in order
to keep constant salt concentration [27]. Graphical deter-
mination of parameters was made from mathematical
analysis according to the method of Cleland [28]. For all
additional experimental conditions, see legend of figures
and tables.

Western blotting analysis

The solubilised proteins (50 pg) were subjected to 12.5 %
SDS-polyacylamide slab gel electrophoresis using the
method of Laemmli [29], then transferred on nitrocellu-
lose filter according to Towbin et al. [30] BDH was dect-
ected by an anti-rat liver BDH polyclonal antibody [31].

Northern blotting analysis

Total RNAs were obtained from brain and liver tissues pre-
viously frozen in liquid nitrogen and stored at -80°C
using the LiCl method as described by Auffray and
Rougeon [32]. Northern blots were performed as
described by Cherkaoui-Malki et al [33]. Hybridization
was done at 42 °C overnight in 50% formamide, 5 x Den-
hardt's, 5 x SSC (Sodium Saline Citrate) and 0.1% SDS.
The filters were washed twice at 42°C for 30 min in 2 x
SSC, 0.5% SDS and once at 65°c for 30 min in 1 x SSC,
0.1% SDS. Rat BDH cDNA probe was described earlier
[34]. Northern blots were normalized with the 18 S and
28 S ribosomal RNAs.

List of Abbreviations
AcAc: acetoacetate, BDH: D-3-hydroxybutyrate dehydro-
genase, BOH : D-3-hydroxybutyrate.
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