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Abstract

Background: The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein
kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino
acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and
functions independent of unknown upstream effectors of mos protein kinase. We have utilized this
property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in
vitro.

Results: We generated recombinant 124-v-Mos using the baculovirus expression system in
Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos
to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this
approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase
assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase |B
(PTPIB), alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTPIB and
casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic
digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by
wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos
targets serine and threonine residues for phosphorylation in casein at a I:| ratio but auto-
phosphorylation occurs predominantly on serine residues.

Conclusion: The mos substrates identified in this study represent a basis to approach the
identification of the mos-consensus phosphorylation motif, important for the development of
specific inhibitors of the Mos protein kinase.

Background oocytes have established a role for c-mos in a) initiation
Mos belongs to a small family of cytoplasmic protein ser-  of the maturation process and the meiosis 1 / meiosis II
ine/threonine kinases having oncogenic activity [1,2]. Itis  transition and b) in metaphase II arrest in mature oocytes
highly expressed in germ cells but barely detectable in a  [6-12]. In mouse c-Mos is apparently not required for in-
variety of somatic tissues [3-5]. Studies in Xenopus
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itiation of maturation, however, like in Xenopus it is ab-
solutely essential for the metaphase II arrest [13,14].

The 124-v-mos oncogene represents one of several trans-
forming gene isolates of the moloney murine sarcoma vi-
rus [15,16] and shows unique constitutive protein kinase
activity and enhanced transforming activity when com-
pared to other v-Mos proteins or to c-Mos [2,17-19]. The
transforming mechanism of Mos involves signalling
through the MAP kinase pathway as phosphorylation of
MEK by c-Mos has been demonstrated [20-23] and map-
ping analyses have shown that Mos and Raf phosphor-
ylate identical sites on MEK [16,24]. The upstream events
of the Mos/MEK/MAPK signalling cascade have not as yet
been identified. In earlier studies we have shown that an
activating mechanism of c-Mos is likely to involve a con-
formational change which is mimicked when a single
amino acid is exchanged in the o-helix C loop of the ki-
nase domain (Arg145-Gly) resulting in constitutive active
c-Mos [19]. Recently Fisher and co-workers proposed an
activating mechanism of c-Mos by sequential association
with Hsp70 and Hsp90, in addition to phosphorylation
[25,26].

Presence of the activating Arg145-Gly amino acid substi-
tution in 124-v-Mos does not change kinase specificity but
is sufficient for constitutive kinase activity [19]. Hence the
kinase activity of 124-v-Mos is independent of upstream
effectors and we have used this oncogenic Mos derivative
to identify substrates for the Mos protein kinase in vitro.
Using the baculo virus expression system we have ex-
pressed active 124-v-Mos protein kinase, as demonstrated
by its ability to auto-phosphorylate, predominantly on
serine residues, and to phosphorylate vimentin in vitro.
We have analysed a panel of acidic and basic substrates in
immunocomplex protein kinase assays and identified two
novel in vitro substrates for 124-v-Mos, the protein tyro-
sine phosphatase 1B and o/B-casein.

Results

Three tryptic 124-v-Mos peptides include target sites for
auto-phosphorylation

We have expressed 124-v-Mos with the baculovirus sys-
tem in Sf9 insect cells and immunopurified 124-v-Mos us-
ing the anti-Mos N13 antiserum [19]. As a control, a Mos-
unrelated protein, a synthetic kinase-inactive construct of
PKC, PKCYK380R[27], was expressed in Sf9 cells. Mos ki-
nase assays, completed in the presence of [y-32P]ATP, were
resolved using SDS-PAGE and the Coomassie blue stain-
ing of the protein gel showed visible amounts of immu-
nopurified 124-v-Mos (fig. 1B, arrowhead). The
corresponding autoradiograph in figure 1A demonstrates
that 124-v-Mos is expressed as a constitutive active protein
kinase indicated by its ability to auto-phosphorylate in
vitro. Further, a parallel kinase reaction was used for phos-
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Figure |

Constitutive kinase activity of immunopurified 124-v-
Mos from baculovirus expressing Sf9 insect cells.
Auto-phosphorylation  of  immunopurified  124-v-Mos
expressed in Sf9 cells is shown in B (Coomassie stained 10%
SDS-PAGE) and A (corresponding autoradiograph). Parallel
124-v-Mos kinase assays were subjected to a two-dimen-
sional phosphoamino acid analysis (C) or a tryptic digestion
followed by a two-dimensional resolution (D). Arrowheads
indicate the origin of sample application in (C,D) and the
position of |124-v-Mos (A,B).

phoamino acid analyses which confirmed that 124-v-Mos
auto-phosphorylation occurred predominantly on serine
residues (fig. 1C) and a two-dimensional resolution of a
tryptic digest of auto-phosphorylated 124-v-Mos showed
that three tryptic peptides include auto-phosphorylation
target sites (fig. 1D), demonstrating that auto-phosphor-
ylation occurs on multiple sites of the Mos protein [28].

124-v-Mos phosphorylates vimentin but not tubulin in vit-
ro

Initially, we tested the kinase activity of 124-v-Mos using
previously identified Mos substrates. It has been shown
that 124-v-Mos, derived from mos-transformed fibrob-
lasts, phosphorylates vimentin in vitro [29] and as pre-
sented here in figure 2C, in vitro kinase assays using
immunopurified 124-v-mos from Sf9 insect cells showed
strong vimentin phosphorylation. In contrast, tubulin
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Figure 2

124-v-Mos phosphorylates vimentin but not tubulin.
In vitro 124-v-Mos kinase assays with either vimentin (C,D)
or purified tubulin from brain (A,B) as substrates were elec-
trophoresed using 10% SDS-PAGE and Coomassie stained
(B,D), the corresponding autoradiographs are shown in
(A,C). Immunoprecipitates of Sf9 cells expressing the kinase-
inactive PKCyK380R were indicated as controls.

which has been shown to be phosphorylated in vivo and
in vitro by Xenopus c-Mos [30] was not a substrate for
124-v-Mos in vitro (fig. 2A). We have tested tubulin puri-
fied from various organs (mouse brain, testis and spleen)
either polymerised, unpolymerised or pretreated with
phosphatases but in none of these states found tubulin to
be phosphorylated by 124-v-Mos (data not shown).

Demonstration of alpha and beta-casein phosphorylation
by 124-v-Mos

In search of further substrates for the 124-v-Mos protein
kinase we tested MBP; histone HI, H2AS, H3; protamine;
protaminsulphate; purified PKC-0/-f II/yand o- and -ca-
sein. With the exception of o- and B-casein (fig. 3A) none
of these substrates were phosphorylated by 124-v-Mos
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(data not shown). The possibility that factors other than
124-v-Mos in the immunoprecipitate might be responsi-
ble for the observed casein phosphorylation was eliminat-
ed by including a synthetic kinase-inactive construct of
124-v-Mos, 124-v-MosK121R[19], as a control in addition
to the Mos-unreleated protein, PKC_K380R A comparison
of background phosphorylation on f3-casein in the immu-
noprecipitates of both controls and 124-v-Mos specific
phosphorylation showed that 124-v-Mos phosphorylates
B-casein 7fold relative to background (fig. 3B). Critically,
a tryptic digest of phosphorylated B-casein revealed that
124-v-Mos phosphorylates a specific tryptic peptide in -
casein which shows no background phosphorylation in
either controls (fig. 3C, arrowhead) strongly supporting
that 124-v-Mos is able to phosphorylate B-casein. Further,
a two-dimensional phosphoamino acid analysis (fig. 3D)
showed that 124-v-Mos phosphorylates o- and B-casein
on serine and threonine residues at a ratio of 1:1.

The protein tyrosine phosphatase IB is a novel in vitro sub-
strate for 124-v-Mos

Protein tyrosine phosphatases constitute a diverse family
of enzymes that can be divided into several subgroups, in-
cluding receptor and non-receptor PTPs [31]. The non-
transmembrane protein tyrosine phosphatase PTP-1B, a
major intracellular PTP is widely expressed. PTP-1B has
been demonstrated to be phosphorylated on multiple
sites in a cell cycle specific manner whereby mitotic hyper-
phosphorylation occurs, reflected by a protein mobility
shift in SDS-PAGE analyses [32]. Using purified PTP-1B as
a substrate, we show here that 124-v-Mos can phosphor-
ylate PTP-1B in vitro (fig. 4A). We controlled this result by
using immunoprecipitates from Sf9 cells expressing the
synthetic kinase-inactive 124-v-Mos construct or purified
PTP-1B alone in parallel kinase assays (fig. 4A). Other ki-
nases such as PKC and CKII that phosphorylate PTP-1B in
vitro are unable to induce a mobility shift of PTP-1B as ob-
served in mitotic cells [32]. Likewise, as shown in figure
4B, a Mos-dependent phosphorylation did not result in a
mobility shift of PTP-1B.

Discussion

In this study we have expressed constitutive active 124-v-
Mos using the baculovirus expression system and identi-
fied novel in vitro substrates for Mos by immunocomplex
kinase assays. It has been shown that 124-v-Mos from
mos-transformed mouse fibroblasts phosphorylates vi-
mentin in vitro [29] and that v-Mos is physically associat-
ed with vimentin in transformed cells [33]. We have used
vimentin as a positive control for 124-v-Mos kinase assays
in vitro to demonstrate protein kinase activity of baculo-
virus expressed 124-v-Mos (fig. 2). It is known that the ki-
nase activity of c-Mos is regulated by cellular factors and
therefore we have chosen the oncogenic variant of c-Mos,
124-v-Mos, in our study since it is independent of activat-
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Figure 3

124-v-Mos phosphorylates o- and f3-casein in vitro.
Mos kinase assays, in the presence of a- and B-casein, were
resolved using 10% SDS-PAGE; the Coomassie stained pro-
tein gel shown in 3A, right panel and the corresponding auto-
radiograph on the left panel. Arrowheads indicate the
position of 124-v-Mos, o~ and B-casein and the antibody.
Using two control immunoprecipitates of $f9 cells expressing
the synthetic kinase-inactive constructs, 124-v-MosKI2IR or
PKCYK380R Mos-specific 3-casein phosphorylation was dem-
onstrated in 3B and 3C: Mos kinase assays were blotted on
nylon-membrane, the phospho-f-casein bands (B, arrow-
head) excised and 32P-Cerenkov counts recorded (B). Alter-
natively, the excised phospho-f-casein bands were digested
with trypsin and electrophoresed using 16% SDS-PAGE (C).
The arrowhead in 3C indicates the tryptic B-casein peptide
phosphorylated by wild-type [124-v-Mos only. Further, two-
dimensional phosphoamino acid analyses of 124-v-Mos phos-
phorylated o-casein (D, left panel) and B-casein (D, right
panel) were completed, the arrowheads indicating the origins
of sample application.

ing mechanisms. Recently it has been shown that Hsp70
and Hsp90 physically interact with c-Mos in Xenopus
oocytes and are required for c-Mos activation [25,26]. An-
other factor controlling c-Mos kinase activity in Xenopus
oocytes was identified by Chen and colleagues [34,35] to
be CKII, a tetrameric holoenzyme composed of two cata-
lytic a-subunits and two regulatory B-subunits [36]. In
Xenopus oocytes c-Mos kinase activity is inhibited by
binding to the C-terminus of CKII B-subunit and by over-
expression of the a-subunit of CKII this effect can be neu-
tralized suggesting a binding competition between c-Mos
and the o-subunit of CKII [34]. Another protein that inter-
acts with c-Mos in Xenopus oocytes is tubulin. Tubulin
not only co-precipitates with c-Mos but also serves as an
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PTP-IB is a substrate for 124-v-Mos in vitro. In vitro
Mos kinase assays, using purified PTP-1B as a substrate, were
resolved using 10% SDS-PAGE and the autoradiograph is
shown in 4A. Immunoprecipitates of Sf9 cells expressing the
kinase-inactive 124-v-MosKI2IR variant or PTP-IB alone
were included as controls (A,B). A parallel kinase assay was
blotted on nylon-membrane and PTP-1B was detected (B)
using the PTP-1B-specific antiserum FG6 [29], arrowheads
indicate the position of 124-v-Mos and PTP-1B.

in vivo and in vitro substrate [30]. In contrast, tubulin was
not a substrate for 124-v-Mos in our immunocomplex ki-
nase studies (fig. 2A). Possibly, this indicates that a cellu-
lar factor present in Xenopus oocytes and co-precipitating
with c-Mos might be necessary for tubulin phosphoryla-
tion by the Mos protein kinase. This factor might not in-
teract with the v-Mos protein, be absent in Sf9 insect cells
or unable to interact with v-Mos. Interestingly, we have
not detected any co-precipitation of the _-subunit of CKII
from Sf9 cells with 124-v-Mos in our immunoprecipitates
(data not shown). However, as previously mentioned,
Hsp70 is known to interact also with 124-v-Mos [26].

Having established that our recombinant 124-v-Mos pro-
tein is active in vitro, we tested a variety of molecules in
immunocomplex kinase assays and identified o- and 3-ca-
sein as very good substrates in vitro (fig. 3). This phospho-
rylation was specific to active 124-v-Mos as the overall
phosphorylation on casein was significantly reduced us-
ing the synthetic kinase-inactive construct 124-v-
MosK12IR and more importantly, a tryptic peptide of ca-
sein was identified to be phosphorylated by 124-v-Mos
only and not by either of the controls used in this study.
As expected, casein phosphorylation occured on serine
and threonine residues. The Mos-specific consensus phos-
phorylation site has not as yet been identified and only
the mos-phosphorylation sites on MAP kinase kinase
have been mapped revealing them to be identical to raf-
phosphorylation sites [24]. Using the mos substrates
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identified in this study, it may be possible to determine
the specific consensus phosphorylation site for the mos
protein kinase as a basis for developing Mos-specific in-
hibitors.

We have also identified protein tyrosine phosphatase 1B
(PTP-1B) as a substrate for 124-v-mos in vitro (fig. 4A).
PTP-1B is phosphorylated on multiple sites in vivo and
during mitosis becomes hyper-phosphorylated resulting
in a mobility shift in SDS-PAGE [32]. Protein kinase C and
CKII phosphorylate PTP-1B in vitro but neither is respon-
sible for the observed mitotic hyper-phosphorylation in
vivo [32]. We show here that likewise PTP-1B phosphor-
ylation by 124-v-mos is insufficient to effect a mobility
shift (fig. 4B). PTP-1B phosphorylation occurs on serine
386, a phosphoacceptor site for Cdc2/cyclin B in vitro and
serine 352, phosphorylated by an unknown kinase. The
serine 352 phosphorylation site either might not be a tar-
get for Mos in vitro or PTP-1B may be sequentially phos-
phorylated by multiple kinases in vivo. Interestingly, it
has been shown that PTP-1B hyper-phosphorylation does
not occur uniquely in mitosis but also during osmotic
shock and is induced by several other stress stimuli [37].
Given that activation of c-Mos is dependent on its interac-
tion with the heatshock proteins, Hsp70 and Hsp90, it is
tempting to speculate that the Mos kinase may phosphor-
ylate PTP-1B also in vivo.

Conclusions

The crucial biological functions of c-mos during meiosis
have been analysed by antisense experiments in Xenopus
lavis and by generating mos-deficient mice establishing
mos as the main player in metaphase II arrest. In contrast,
not much is known about activating mechanisms of mos
and biochemical properties such as the mos-specific con-
sensus phosphorylation site. In this study we immunopu-
rified an oncogenic and constitutive active variant of mos,
124-v-Mos, and identified novel phosphorylation sub-
strates, PTP1B and o- and B-casein. Our substrates repre-
sent a basis to determine the consensus mos-specific
phosphorylation site and further, to analyze this phos-
phorylation ability functionally in vivo.

Materials and Methods

Protein expression and in vitro immunocomplex protein ki-
nase assays

The construction and isolation of recombinant baculovi-
ruses expressing active 124-v-Mos and the synthetic ki-
nase-inactive variant of 124-v-Mos, 124-v-MosK12IR " jg
described in detail elsewhere [19]. According to the stand-
ard procedure published by Summers & Smith [38], re-
combinant proteins were expressed at 27°C in Sf9 cells for
48 hrs. and mos was immunopurified using the anti-Mos
N13 antiserum as stated in [19]. Mos kinase assays were
carried out in 50 _I kinase reaction buffer (10 mM HEPES
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pH 7.3, 150 mM NaCl, 0.1% Triton X-100, 2 mM DTT, 15
mM MnCl,, 5 mM MgCl,, 2.5 mM B-glycerophosphate,
2.5 mM NaF, 20 uM ATP/ 10 pCi [_y32P]ATP), incubated
for 20 min. at 25°C and stopped by the addition of Lae-
mmli buffer. For in vitro substrate kinase assays, 2 pg of
substrate was added to each kinase reaction. Phosphopro-
teins were resolved using 10% SDS-PAGE, Coomassie
stained, dried and compared with the corresponding au-
toradiograph. Immunodetection of western blots were
performed using the ECL system and protocol (Amer-
sham).

Substrates for in vitro immunocomplex kinase assays

o~ and B-casein (dephosphorylated, bovine origin) were
purchased from Sigma and vimentin from Roche. Purified
PTP-1B and the PTP-IB-specific antiserum FG6 were pro-
vided by N. Tonks, Cold Spring Harbor [32]. Tubulin was
purified from either mouse brain, testis or spleen by F.
Propst, Vienna.

Two-dimensional phosphoamino acid analyses
Two-dimensional phosphoamino acid analyses were
completed according to Boyle and colleagues [39]. Briefly,
phosphoproteins were separated using SDS-PAGE, blot-
ted on nylon-membrane and the desired protein bands
were excised. The membrane strips were washed sequen-
tially with 100% methanol and water and the phospho-
proteins hydrolysed for 60 min. at 110°C in 5.7 N HCI.
The hydrolysed samples were lyophilised, resuspended in
2.5% formic acid, 7.8% acetic acid and mixed at 15:1 with
a non-radioactive amino acid standard (1 mg/ml of each
phospho-serine, -threonine, -tyrosine; Sigma). Finally,
samples were spotted on thin-layer chromatography
plates and separated in two dimensions using the HTLE-
7000 apparatus and manufacture's procedure (Two-Di-
mensional Peptide Mapping And Phosphoamino Acid
Analysis, Featuring The Hunter Thin Layer Plate Electro-
phoresis System. B. Boyle & T. Hunter, C.B.S. Scientific
Company, Del Mar, USA). First dimension: 20 min. elec-
trophoresis at 0.8 bar, 1 kV in 2.5% formic acid, 7.8%
acidic acid. Second dimension: 16 min. at 0.8 bar, 1.3 kV
in 5% acidic acid, 0.5 % pyridine. The phosphoamino ac-
ids were fixed for 10 min. at 65°C and the standard non-
radioactive amino acids visualised by spraying the chro-
matography plates with 0.25% ninhydrin followed by in-
cubation for 15 min. at 65°C. The phosphoamino acids
were located by comparing the autoradiograph with the
stained standard amino acids.

Tryptic digests and one- or two-dimensional separation of
tryptic phosphopeptides

According to Boyle and colleagues [39] phosphorylated
proteins were proteolytically digested with trypsin by in-
cubating twice for 2 hrs. at 37°C, on each occasion with 10
ug trypsin (Promega, modified trypsin, sequencing grade)
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in 200 pul 50 mM NH4HCO3 and a two-dimensional sep-
aration of tryptic phosphopeptides was completed using
the HTLE-7000 apparatus and manufacture's protocol:
electrophoretic separation was performed on thin layer
chromatography plates for 25 min. at 0.8 bar and 1 kV,
followed by conventional chromatography in 39.25% n-
butanol, 30.25% pyridine, 6.1% acetic acid. One-dimen-
sional separation of tryptic phosphopeptides was
achieved using 16% SDS-PAGE according to Schégger and
von Jagow [40].

List of Abbreviations used

Sf9, Spodoptera frugiperda cell line; MAPK, mitogen-activat-
ed protein kinase; MEK, MAP and erk kinase; Hsp, heat-
shock protein; PTP, protein tyrosine phosphatase; MBP,
myelin basic protein; PKC, protein kinase C; CKII, casein
kinase II.
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