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Abstract

Background: Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a
holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are
dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids
and unbranched fatty alcohols, whereas that of barn ow!l contains fatty acids and alcohols both of which are
branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty
alcohols that can be esterified with acyl-CoA thioesters forming wax esters.

Results: cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl
(Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous
expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a
NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast
cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with

different properties were identified, termed FART and FAR2. The FAR1 group mainly synthesized 1-hexadecanol
and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred
stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of
domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland.

Conclusion: The data of our study suggest that the identified and characterized avian FAR isozymes, FART and
FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

Background

Fatty acyl-CoA reductases (FAR) can be divided into two
classes that differ with respect to the end-product synthe-
sized, i.e. the aldehyde- and the alcohol-forming enzymes
[1]. Aldehyde-generating FAR catalyze a two-electron
reduction of activated fatty acids, so that fatty aldehydes
are formed. Such enzymes have been described in pea
leaves, green algae and bacteria [2-6]. The fatty aldehydes
can be further reduced to fatty alcohols by fatty aldehyde
reductases [7] or can be involved in the biosynthesis of
hydrocarbons [5,6]. On the other hand, alcohol-forming
FAR catalyze the reduction of activated fatty acids to
fatty alcohols. This four-electron reduction takes place in
two steps. In the first step an aldehyde is formed, that is
subsequently reduced to a fatty alcohol in the second
step [1]. Proteins have been purified and genes encoding
alcohol-forming FAR were identified in plants [1,8-11],
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mammals [12], insects [13-17], birds [18] and protozoa
[19]. They usually require NADPH as electron donor but
in certain organisms like Euglena gracilis [20] NADPH
can be substituted by NADH.

FAR enzymes of plants are involved in the biosynthesis
of cutin, suberin and storage lipids [1,8,10]. In some
insect species long-chain alcohols function as sex or
communication pheromones [14,21]. Mammalian FAR
enzymes produce alcohols needed for the biosynthesis of
wax esters and ether lipids [12,22-24] but in the preputial
gland long-chain alcohols like 1-hexadecanol can serve as
putative chemical signals in sex recognition [25,26]. In
birds fatty alcohols are constituent parts of wax esters
that are used for cleansing and lubricating of their feath-
ers. The waxes are accumulated in a special holocrine
gland, the uropygial gland, that lies between the fourth
caudal vertebra and the pygostyle [27]. Type and compo-
sition of these wax esters are dependent on the bird spe-
cies. For instance, the wax ester secretion of goose
contains multi-methyl-branched fatty acids and straight-
chain fatty alcohols [28,29], whereas that of barn owl can
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contain both, methyl-branched fatty acids and alcohols
[30]. The secretion of the uropygial gland from chicken is
composed of 2,3-diester waxes, whose biosynthesis is not
completely elucidated yet [31-33]. Furthermore it was
demonstrated that fatty alcohols are possibly involved in
the chemical communication of budgerigars [34] and
that uropygial glands can play a role in the sexual beha-
vior in domestic chicken [35].

Fatty alcohols in the range between 6 to 22 carbon
atoms are used to produce lubricants, emulsifiers, agro-
chemical formulations, pharmaceutical and cosmetic pro-
ducts [36]. For instance, in Western Europe about 454
thousand tonnes of fatty alcohols were used in 2006 to
produce alcohol ethoxylates [37]. Production of these alco-
hols from petrochemical raw material will consume
remaining fossil oil resources, hence there is the need of
inventing new production technologies in future. For
instance, metabolic engineering of oil crops was carried
out to increase the yield of fatty acids and to modify the
fatty acid composition, so that these crops could achieve
the requirements of the producing chemical industry and
replace fossil oil [38].

In order to identify new fatty alcohol synthesizing
enzymes with catalytic activities suitable for the producing
chemical industry, we investigated the uropygial glands of
barn owl, domestic chicken and domestic goose. In this
study we report on the identification of avian FAR
sequences by similarity-based sequence search, on the het-
erologous expression of the genes in yeast, and on the cat-
alytic properties of the recombinant enzymes.

Results

Identification and isolation of FAR sequences from
uropygial glands

Based on sequence similarity with FAR proteins of mam-
mals and jojoba, two putative FAR sequences of chicken,
FAR1 and FAR2 (additional file 1), were identified. To
clone the cDNA sequences, mRNA was isolated from the
uropygial glands and used to amplify the FAR sequences
by RT-PCR with gene specific primers. Resulting cDNAs
were analyzed and finally cloned into yeast expression vec-
tors. Analyses of the cDNA sequences from chicken
showed that they encoded amino acid sequences with con-
servative substitutions in one (FARI1: position 254: pheny-
lalanine substituted by tyrosine, termed GgFAR1db) or in
two sites (FAR2: position 159: valine substituted by
methionine, position 457: lysine substituted by arginine,
termed GgFAR2) compared to the database sequences.
Furthermore a splicing variant of FAR1 (substitution of
position 319 to 376, annotated as exon 9, by intron
sequence of the same length; see additional file 2), termed
GgFARI, was identified. Moreover barn owl and goose
were found to possess putative FAR sequences very similar
to those of chicken. Two cDNA sequences of barn owl,
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named TaFAR1 and TaFAR2, and one of goose, termed
AdFAR1, were additionally amplified from the uropygial
glands (additional file 1). In contrast to barn owl and
chicken, we failed to clone a FAR2 sequence from the uro-
pygial gland of goose.

Sequence analysis showed that all avian FAR proteins
had two conserved domains, the NADB-Rossmann
superfamily domain [cd05236: FAR-N_SDR_e] and the
FAR_C superfamily domain [cd09071: FAR_C] and one
predicted transmembrane region at the C-terminus
(additional file 3). FAR enzymes of mammals have been
shown to possess domain patterns similar to those of
avian FAR while those of plants appear to lack the trans-
membrane region (additional file 3) [10,12].

Phylogenetic analysis of FAR amino acid sequences of
birds and other organisms resulted in a bootstrap con-
sensus tree shown in Figure 1. It turned out that the
avian sequences could be divided into two groups.
AdFARI, GgFAR1, TaFAR1 and GgFAR1db shared high
sequence identity with each other as well as with FAR1
sequences of mammals (89% to 93%). The sequence iden-
tity between GgFAR2 and TaFAR2 was in the same range
as that between the avian FAR1 proteins (93%). On the
other hand FAR?2 of birds showed relatively low sequence
identities with the avian FAR1 group and the mammalian
FARI and FAR2 proteins (about 68% at most). The avian
sequences showed the lowest identity with FAR proteins
of plants with at most 21%.

Functional expression studies in yeast

To verify the catalytic properties of the avian sequences,
functional expression studies in yeast were carried out.
The data provided clear evidence that these sequences
encoded fatty acyl-CoA reductases that catalyzed the pro-
duction of fatty alcohols (Figure 2a and 2b). TaFAR1
showed the highest activity in yeast and produced up to 18
pumol fatty alcohol per gram fresh weight. The data in
Figure 2b also suggest, that the chain length specificity
increased from AdFARI1, via GgFARI to TaFAR1, while
GgFAR2 had a more pronounced substrate specificity than
TaFAR?2.

Feeding experiments with mixtures of fatty acids added
to the media were carried out to investigate the alcohol
production of intact transgenic yeast cells. Supplementing
the transgenic yeast strains with even-numbered, saturated
fatty acids between 14 to 22 carbon atoms gave results
very similar to those shown in Figure 2b. Only FARI cells
contained slightly higher amounts of 14:0-OH, while
FAR?2 cells contained distinctly lower amounts of 18:1-OH
and trace amounts of 20:0-OH. Feeding experiments with
monounsaturated fatty acids of chain lengths between 14
to 22 carbon atoms resulted in no additionally formed
fatty alcohol species unlike those with odd-numbered,
saturated fatty acids between 13 to 19 carbon atoms. As
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Figure 1 Evolutionary relationships of FAR from different taxa. Amino acid sequences of FAR from birds (Anser anser domesticus, Ad; Gallus
gallus domesticus, Gg; Tyto alba, Ta), mammals (Homo sapiens, Hs; Mus musculus, Mm), insects (Apis mellifera, Am; Yponomeuta evonymellus, Ye;
Yponomeuta rorellus, Yr; Yponomeuta padellus, Yp; Ostrinia nubilalis, On; Ostrinia scapulalis, Os; Bombyx mori, Bm), protozoa (Euglena gracilis, Eg)
and plants (Arabidopsis thaliana, At; Triticum aestivum L., Ta; Simmondsia chinensis, Sc) were compared to calculate a bootstrap consensus tree.
Numbers above branches: bootstrap values, scale: number of amino acid differences per site.
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given in Figure 3, feeding experiments with odd-numbered
fatty acids gave a fatty alcohol production within the yeast
cells, distinctly different to the respective yeast cells with-
out supplemented fatty acids (Figure 2b). Yeast cells
expressing FAR1 enzymes of barn owl, chicken and goose
produced 15:0-OH as main product that comprised up to
65% of the total mixture. Furthermore 17:0-OH was
detected in all of these yeast cells, although in lower

amounts than 15:0-OH and 16:0-OH (Figure 3). On the
other hand, yeast strains expressing FAR2 sequences pro-
duced mostly 18:0-OH and 17:0-OH while 19:0-OH was
formed in low amounts only.

Investigation of enzymatic properties
In line with the predicted transmembrane domain in the
C-terminal region of the avian FAR proteins, assays with
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Figure 2 Alcohol production of yeast strains expressing avian FAR enzymes from endogenous fatty acids. (a) TLC analysis of lipid
extracts from transgenic yeast cells. Total lipid fraction of yeast cells expressing one of the avian FAR sequences or the empty vector control

were extracted after 72 h incubation and lipid extracts were analyzed by TLC. FFA: free fatty acids, R-OH: fatty alcohols. (b) Alcohol composition
of transgenic yeast strains. The alcohol composition was analyzed and quantified by GC. Results are mean values of duplicate extractions from
two independent yeast cultures. Following concentrations in umol*g™ fresh weight correspond to 100%: AdFAR1:15.6, GgFAR1:13.2, TaFAR1: 17.7,
GgFAR2: 8.2, TaFAR2: 2.9, control: 0.02. Because GgFARTdb showed results very similar to those of GgFART, results of GgFAR1 are presented only.
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subcellular fractions of transgenic yeast cells expressing
an avian FAR sequence showed that the FAR activity
was detectable in the total membrane fraction only. All
FAR enzymes required NADPH as electron donor (opti-
mal concentration of about 5 mM, Figure 4) as well as
activated acyl groups as substrates (as addition of ATP
and CoA to free fatty acids restored FAR activity).
Furthermore it was shown that both isoforms produced
not only fatty alcohols but also fatty aldehydes as inter-
mediates although in different proportions (Figure 4a,
additional file 4). FARI enzymes produced distinctly
higher aldehyde levels than FAR2 enzymes. In addition,
aldehyde production varied with the chain length of the
acyl-CoA and was highest in FAR1 assays with 14:0-
CoA (additional file 4). These data suggest that the alde-
hydes are prematurely released intermediates of the FAR
reaction. The enzymatic activities were constant for up
to 15 min at 37°C. The pH-optimum of FAR1 was
found to be at 6.5 while FAR2 displayed the highest
activity at about pH 5.5 (additional file 5a). Addition of
up to 1 mM MgCl, stimulated the FAR activity 2-fold,

while addition of BSA into assays with 20 uM acyl-CoA
gave severalfold higher FAR activities (additional
file 5b). The alcohol formation rate was constant up to
2 pg protein of membrane fraction with FAR1 and up
to 20 ug protein with FAR2 (additional file 5c). Under
optimal conditions membranes harboring TaFAR1
showed a specific activity of about 9 nmol product*min”
"*mg! protein whereas TaFAR2 showed a lower activity
of about 3 nmol product*min**mg™ protein.

Studies with different acyl-CoA concentrations were
carried out to determine the substrate dependencies of
FAR1 and FAR2 enzymes. As depicted in Figure 5,
TaFAR1 was highly active with 16:0-CoA and showed
lower activity with 14:0-CoA or 18:0-CoA. On the other
hand, TaFAR2 was distinctly more active with 18:0-CoA
than with 14:0-CoA and 16:0-CoA. The different chain
length specificities of TaFARI and TaFAR2 were in line
with results of the in vivo expression studies (Figure 2b).
They were also supported by competition assays con-
ducted with membrane fractions harboring TaFARI or
TaFAR2 and a mixture of unlabeled saturated acyl-CoAs
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Figure 3 Alcohol production of yeast strains expressing avian FAR enzymes supplemented with a mixture of odd-numbered saturated
fatty acids. Yeast cells expressing one of the avian FAR proteins or the empty vector control were supplemented with a mixture of 13:0, 15:0,
17:0, 19:0, extracted after 72 h incubation and synthesized fatty alcohols were analyzed by GC. Results are mean values of extractions from at
least three independent yeast cultures. Following alcohol concentrations in pmol*g™ fresh weight correspond to 100%: AdFART: 16.1, GgFART:
10.6, TaFART: 15.8, GgFAR2: 15.6, TaFAR2: 3.9, control: 0.0.
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Figure 4 Cofactor requirement of FAR enzymes. (a) Cofactor requirement of TaFAR1 and TaFAR2. Assays were carried out with the total
membrane fraction of yeast cells expressing TaFAR1 or TaFAR2. [1-"*C]-labeled products derived from assays carried out with labeled 16:0-CoA
(lane 1 and 2, TaFART) or labeled 18:0-CoA (lane 3 and 4, TaFAR2) and NADH (lane 1 and 3) or NADPH (lane 2 and 4). (ALD: fatty aldehyde, FFA:
free fatty acid, R-OH: fatty alcohol). (b) NADPH dependency of TaFAR1. Assays were conducted with the total membrane fraction of yeast cells
expressing TaFART and with [1-"*CJ-labeled 16:0-CoA. The concentration of NADPH was varied under otherwise standard assay conditions.
Results are the sum of synthesized aldehydes and alcohols and display mean values of two independent assays.
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Figure 5 Acyl-CoA dependencies of TaFAR1 (a) and TaFAR2 (b). The total membrane fractions of yeast cells expressing TaFART or TaFAR2
were used as enzyme source. Different concentrations of the given [1-'"C]-labeled acyl-CoA species were tested under optimal assay conditions.
Results are the sum of synthesized aldehydes and alcohols and display mean values of two independent assays.
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with chain lengths of 12 to 20 carbon atoms. TaFAR1
mostly produced 16:0-OH with about 80% of the total
alcohol production and lower levels of 14:0-OH and
18:0-OH, whereas TaFAR2 synthesized about 60% of
18:0-OH, 25% of 20:0-OH and smaller amounts of 16:0-
OH. Both isozymes were inactive with 12:0-CoA (addi-
tional file 6).

Figure 6 displays the substrate specificities of FAR1
and FAR2 from barn owl compared to those of the
other avian enzymes. The acyl-CoA specificities of FAR
from chicken were similar to those of the respective
enzymes from barn owl. The FAR1 enzymes were more
active with 16:0-CoA than with 14:0-CoA and 18:0-CoA,
only AdFARI of goose was almost equally active with all
substrates. On the other hand, the FAR2 enzymes
showed the highest activity with 18:0-CoA. The corre-
sponding studies of FAR1 with 10:0-CoA and 12:0-CoA
gave low alcohol formation rates (with TaFAR1 up to
1.68 nmol 10-OH*2 h™**mg™ protein).

To investigate the ability of avian FAR enzymes to form
branched-chain fatty alcohols that were detected in the
uropygial wax esters of barn owl [30], assays with
3,7,11,15-tetramethyl-C16-CoA (phytanoyl-CoA) and 2-
methyl-branched acyl-CoAs, with chain lengths of 14 to 18
carbon atoms, were carried out with membrane fractions
harboring avian FAR enzymes. As Figure 7 displays,
GgFAR1 and TaFAR1 were active with 2-methyl-C16-CoA

whereas AAFARI as well as the FAR2 enzymes exhibited
low activities with 2-methyl-C18-CoA, compared to the
empty vector control. In total, these activities were dis-
tinctly lower than those with saturated straight-chain acyl-
CoAs and aldehyde synthesis could not be observed. No
reductase activity was detected with phytanoyl-CoA.

Expression of GgFAR1 and GgFAR2 in different tissues of

chicken

To investigate whether the expression of avian FAR
sequences was restricted to the uropygial gland, the
expression patterns of FAR1 and FAR2 were analyzed in
the tissues of pectoral muscles, liver, uropygial gland,
brain, adipose tissue and heart from domestic chicken by
semi-quantitative RT-PCR. As depicted in Figure 8, FAR
transcripts were detectable in various tissues, but FAR1
showed an expression pattern clearly different from that
of FAR2. Expression of FARI was mainly demonstrated
in the tissue of uropygial gland, while the highest expres-
sion of FAR2 was found in brain tissue.

Discussion and Conclusion

We report on the functional characterization of fatty
acyl-CoA reductases from birds. Based on the sequence
similarity between FAR proteins, the respective cDNAs
from chicken, barn owl and goose were cloned. Sequence
similarities between the avian enzymes in conjunction
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Figure 6 Substrate specificities of avian FAR enzymes. /n vitro assays were conducted with the total membrane fractions of yeast cells
harboring one of the avian FAR sequences under optimal conditions and with [1-'*C]-labeled acyl-CoA thioesters. Results are mean values of
assays conducted in duplicate with three independent membrane preparations and represent the sum of synthesized alcohols and aldehydes.
100% correspond to the following FAR activities in mmol*r‘mn’]*mg'1 membrane protein: AdFAR1T: 1.7, GgFAR1: 8.2, TaFART: 9.2, GgFAR2: 3.7,

with their expression pattern and their enzymatic proper-
ties suggest that they represent two different groups,
termed FAR1 and FAR2. While FAR1 enzymes preferred
chain lengths of 15 and 16 carbon atoms, FAR2 enzymes

showed a pronounced preference for C18 acyl groups. In
that way avian FAR2 enzymes resemble the correspond-
ing mammalian isozymes, while FAR1 enzymes of birds
have acyl-CoA specificities different from those of
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Figure 7 (a) Activities of avian FAR enzymes with branched-chain acyl-CoA thioesters. The total membrane fractions of yeast cells
harboring one of the avian FAR sequences were used as enzyme source and [1-'“Cl-labeled 2-methyl-branched acyl-CoA thioesters as substrate.
Results are mean values of assays conducted in duplicate with three independent membrane preparations and represent the sum of synthesized
alcohols and aldehydes. 100% correspond to the following FAR activities in pmol*min "*mg™ protein: AdFART: 25, GgFART: 170, TaFART: 200,
GgFAR2: 60, TaFAR2: 18, control: 10. (b) TLC analysis of FAR assay products with branched-chain acyl-CoA thioesters. Reaction products of
assays with yeast membranes harboring either GgFART or GgFAR2 are shown.
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Figure 8 Semi-quantitative expression analyses of GgFAR1 and
GgFAR2 sequences in chicken tissues. Partial cDNA sequences
were amplified by RT-PCR using 1 ug of total RNA isolated from
different tissues as template. Synthesis of partial 3-actin cDNA was
carried out as a control for RNA load. By reactions without reverse
transcriptase DNA contamination was excluded.

mammalian FAR enzymes [12]. Within the avian FAR1
group only the enzyme of goose was found to have a
relaxed chain length specificity. It displayed very similar
activities with C14 to C18 acyl groups and thus combined
the properties of both FAR1 and FAR2 of chicken and
owl. Perhaps geese express a FAR1 gene only in their
uropygial glands. That would explain why we succeeded
in cloning of FAR1 but not of FAR2 transcripts from this
gland tissue. Expression studies with goose tissues will
show whether this assumption holds true.

FAR assays with 2-methyl-branched acyl-CoA thioe-
sters gave activity patterns with the different isozymes
(Figure 7) similar to those obtained with respective
unbranched acyl-CoAs (Figure 6). Again the FAR1
enzymes of both chicken and barn owl were most active
with the C16 acyl group while the FAR2 enzymes specifi-
cally used the C18 acyl group. Regardless of the bird spe-
cies, specific activities of the FAR enzymes were about
fifty times lower with branched than with unbranched
acyl-CoA thioesters. These data suggest that avian FAR
can produce branched-chain fatty alcohols only if the
enzymes are provided with an acyl-CoA pool largely con-
sisting of branched-chain acyl groups. In view of the very
similar properties of FAR enzymes from chicken and
barn owl this appears to hold true regardless of whether
uropygial glands produce wax ester with branched-chain
alcohols, like those of barn owl, or without such alcohols,
like chicken and goose [28,30-33]. Uropygial glands have
been shown to control their synthesis of multi-branched
fatty acids by the substrate pool available to fatty acid
synthetase [39]. While malonyl-CoA caused the forma-
tion of n-fatty acid, substitution of malonyl-CoA by
methylmalonyl-CoA resulted in an efficient synthesis of
multi-methyl-branched fatty acid in spite of the fact that
the fatty acid synthetase has about 500 times higher
activity with malonyl-CoA than with methylmalonyl-CoA
in vitro [39]. According to these data it is likely that uro-
pygial glands regulate not only fatty acid synthesis but
also acyl-CoA reduction by the substrate pool available
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to the respective enzymes. However, additional regulation
mechanisms might be involved as well. Perhaps acyl-CoA
synthetases, specifically expressed in the uropygial glands
of barn owl and preferentially activating branched-chain
fatty acids, can facilitate substrate channeling, but this
awaits clarification. Currently we cannot exclude the pos-
sibility that birds which secrete wax with branched-chain
fatty alcohols possess uropygial gland-specific FAR
enzymes unrelated to the known ones but in view of the
data so far available this appears unlikely.

Expression studies of FAR sequences in chicken demon-
strated that these enzymes are distributed to different tis-
sues. GgFAR1 showed the highest expression level in the
uropygial gland whereas GgFAR2 was highly expressed in
the brain tissue, suggesting that avian enzymes may be
involved in wax ester and ether lipid biosynthesis and per-
haps in pheromone production [34]. Enzymes of the FAR
family from other taxa can be distributed to numerous tis-
sues as well and are not restricted to one biosynthetic
pathway [8,10,12,14].

The characterized enzymes show chain length specifici-
ties for middle- to long-chain acyl-CoAs, regardless of
whether these substrates are branched or unbranched.
Because alcohols with chain lengths between 6 and 22 car-
bon atoms are manufactured for a multiplicity of applica-
tions [36], the characterized avian FAR might be used as
enzymatic catalysts for the production of such oleochem-
icals. Engineering of oil crops expressing FAR in combina-
tion with corresponding fatty acid synthesizing and
activating enzymes could be a prospective approach to
reduce the dependency upon fossil oil to produce fatty
alcohols. Expression of enzymes involved in the fatty alco-
hol biosynthetic pathway in combination with wax ester
synthases could be a further possibility to design new oil
crops for industry.

Methods

Bioinformatical tools

To identify avian FAR sequences, amino acid similarity
search was carried out with the “basic local alignment
search tool” (BLASTP 2.2.25, NCBI) [40,41] using the fol-
lowing queries: human, HsFAR1 [NCBI: NP_115604];
human, HsFAR2 [NCBI: NP_060569.3]; mouse, MmFAR1
[NCBI: NP_080419.2]; mouse, MmFAR2 [NCBI:
NP_848912.1] and jojoba, ScCFAR [NCBI: AAD38039.1]
(for further accession numbers see additional file 1). Pro-
tein property analyses were conducted with “TMHMM”
[42-44] and “NCBI Conserved Domain Search” [45-47].
For the illustration of conserved domains and transmem-
brane regions “PROSITE MyDomains” on the ExPASy ser-
ver was used. Amino acid sequence alignments were
carried out with ClustalX2.1 [48] and GeneDoc [49]. Phy-
logenetic analysis of FAR amino acid sequences was con-
ducted with MEGAS5 [50-53], using the Neighbor-Joining



Hellenbrand et al. BMC Biochemistry 2011, 12:64
http://www.biomedcentral.com/1471-2091/12/64

method with 1000 bootstrap replicates. The evolutionary
distances were computed using the p-distance method
and are in the units of the number of amino acid differ-
ences per site.

mRNA preparation

Tissues of domestic chicken and domestic goose were
obtained from Putenfarm Peter Ritte in Wegberg-Rickel-
rath, tissues of barn owl were obtained from the Institute
for Biology II, RWTH Aachen. After the frozen tissue was
pulverized with mortar and pestle, 3 volumes of TRIZOL®
reagent (Invitrogen, Germany) were added and the sus-
pension was vortexed at room temperature for 15 min.
One volume of 1-chlor-3-brompropane (Applichem, Ger-
many) was added and the mixture was incubated at room
temperature for 10 min. After centrifugation at 14 000 x g
and 4°C for 20 min, the RNA of the aqueous phase was
precipitated by adding 1 volume isopropanol and incubat-
ing the mixture 15 min at room temperature. The RNA
was sedimented by centrifugation at 14 000 x g and 4°C
for 20 min. After washing with 70% ethanol, the sedimen-
ted RNA was dissolved in 100-300 pL distilled water.
Integrity of isolated RNA was analyzed by agarose gel elec-
trophoresis, and the concentration of nucleic acids was
measured photometrically. mRNA preparation was carried
out using Dynabeads® (Invitrogen, Germany).

Vector construction and yeast transformation

First strand cDNA synthesis of FAR sequences from
mRNA of the uropygial glands was carried out using an
AMV reverse transcriptase (Fermentas, Germany) and
reverse primer of the respective sequences (Rev-FAR1, 5'-
TCAGTATCTCATAGTACTGGAGG-3’ or Rev-FAR2,
5-TCAGTGCCTGAGGGTGCTGG-3’). PCR of FAR1
and FAR2 sequences was carried out with a Pfu-polymer-
ase (Fermentas, Germany) and the primers For-FARI, 5'-
CACCATGGTTTCCATACCTGAATATTATG-3" and
Rev-FARI, or For-FAR2, 5-CACCATGTCTTCAGTCT-
CAGCTTATTAC-3" and Rev-FAR2 (Eurofins MWG
operon, Germany). Sequences were cloned into the Gate-
way” entry vector pENTR-SD/D-TOPO (Invitrogen),
transformed into Escherichia coli TOP10 (Invitrogen).
Vectors were re-isolated, sequenced (Fraunhofer IME,
Aachen, Germany) and the LR-reaction was carried out
with the Gateway® Clonase Mix II™(Invitrogen) and the
Gateway" yeast expression vector pYES-DEST52 (Invitro-
gen) containing a galactose inducible promoter (GAL1).
Yeast cells of the strain Saccharomyces cerevisiae BY4741
Ddgal Dirol (MATa, his3D1, leu2D0, met15D0, ura3DO,
lro1-D::kanMX4, dgal-D:natMX4) [54] were transformed
with the expression constructs or the empty vector as a
control via electroporation. Transgenic yeast strains were
grown in synthetic dropout (SD) medium containing
0.068% (w/v) amino acid supplement mixture (CSM)
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without uracil and leucine (MP Biomedicals, France),
0.5% (w/v) ammonium sulfate (Roth, Germany), 0.17%
(w/v) yeast nitrogen base (MP Biomedicals, France), 0.01%
(w/v) leucine (Roth, Germany), 2% (w/v) galactose or
2% (w/v) glucose at 28°C.

Lipid analysis of transgenic yeast cultures

SD-medium with 2% galactose was inoculated with a yeast
preculture harboring one of the FAR constructs or the
empty vector as a control and was incubated for 72 h at
28°C without or with supplementation of 250 uM fatty
acids. Cells of 10 ml culture were harvested, washed twice
with distilled water, dried and after adding of 125 nmol
dodecanoic acid and dodecanol (Sigma-Aldrich, Germany)
as internal standards the transmethylation of fatty acids
was carried out with 2 mL 0.5 M H,SO, and 2% 2,2-
dimethoxypropane in methanol at 80°C for 1 h. Fatty acid
methyl esters (FAME) and fatty alcohols were extracted
with 3 mL heptane and analyzed via gas chromatography.
Derivatization of fatty alcohols was carried out with
1:1 (v/v) heptane/N, O-bis(trimethylsilyl)trifluoroaceta-
mide (BSTFA) (Roth, Germany) at 70°C for 1 h. Solvents
were removed under a stream of nitrogen at room tem-
perature, lipids were dissolved in heptane and analyzed via
gas chromatography. Total lipids of transgenic yeast cells
were extracted according to Bligh & Dyer [55] and ana-
lyzed by TLC (silica gel plate, 60 A, Merck; Germany) in
heptane/diethylether/acetic acid (90:60:1, v/v/v). Lipids
were visualized by staining with dichlorofluorescein and
identified by comparison with external standards.

Gas chromatography (GC)

Gas chromatographic analysis was carried out with a HP
6890 gas chromatographic system equipped with the col-
umn OPTIMA-5MS (Macherey & Nagel, Germany) and a
flame ionization detection (FID) system. The following
temperature program was used for FAME and fatty alco-
hol analysis (2 min at 120°C, then 10°C per min up to
150°C; then 3°C per min up to 270°C; then 10°C per min
up to 300°C, hold 1 min at 300°C; with a total column
flow of 1.0 mL per min and 1 bar pressure; N, as carrier
gas). Identification of the analytes was carried out by com-
parison of the retention time with those of the external
alcohol standards of different chain lengths and degrees of
saturation (Sigma-Aldrich, Germany) and in addition by
the derivatization of fatty alcohols with BSTFA that
resulted in a shift of retention time compared to the free
fatty alcohols.

Preparation of total membrane fractions of transgenic
yeast strains

200 mL of induced transgenic yeast cultures were incu-
bated for 16 h at 28°C. Cells were harvested and washed
in 20 mL buffer TH (50 mM TRIS/H,SOy, pH 7.4) and
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subsequently frozen at -20°C for 10 min. Glass beads
(0.75-1 mm diameter) and 2 mL buffer were added and
cells were vortexed for 5 min, centrifuged at 1300 x g
and 4°C for 5 min. The supernatant was transferred into
a new tube and the latter steps were repeated two times.
The supernatants were pooled and sonicated twice for
30 s on ice. Cell debris were sedimented at 2500 x g and
4°C for 15 min and the resulting supernatant was centri-
fuged at 140 000 x g and 4°C for 1 h. Pelletized yeast
membranes were resuspended in buffer TH, quick-frozen
in liquid nitrogen, and stored at -80°C. Protein concen-
tration was determined [56].

Synthesis of [1-'*C]-labeled branched-chain fatty acids
[1-*C]2-Methyltetradecanoic, 2-methylhexadecanoic and
2-methyloctadecanoic acids were prepared by o.-methyla-
tion of the corresponding [1-'*C]-labeled fatty acids via
the sequence carboxylic acid — acyl chloride — diazoke-
tone — chloroketone — 2-methylcarboxylic acid essen-
tially as described [57]. Purification by reversed-phase
HPLC (solvent system, acetonitrile/water/acetic acid
85:15:0.01, v/v/v) afforded > 98% pure materials having a
specific radioactivity of 0.622 GBq/mmol.

[1-**C]3,7,11,15-Tetramethylhexadecanoic acid (phyta-
nic acid) was synthesized starting with 2,6,10,14-tetra-
methylpentadecanoic acid (pristanic acid; Lipidox Co.,
Stockholm, Sweden) by the sequence carboxylic acid —
primary alcohol — bromide — '*C-nitrile — "*C-car-
boxylic acid. The material was purified by reversed-phase
HPLC (solvent system, acetontrile/acetic acid 100:0.01,
v/v) to afford > 98% pure material having a specific radio-
activity of 0.622 GBq/mmol.

In vitro FAR assays

FAR assays were routinely carried out with [1-'%C]-labeled
acyl-CoA thioesters namely 14:0-CoA, 2.04 GBq/mmol;
18:0-CoA, 2.04 GBq/mmol (Biotrend, Germany); 16:0-
CoA, 2,22 GBq/mmol (Perkin Elmer, Germany); 2-methyl-
branched-CoAs, 0.62 GBq/mmol, 3,7,11,15-tetramethyl-
hexadecanoyl-CoA, 0.17 GBq/mmol, 10:0-CoA, 0.08 GBq/
mmol, 12:0-CoA, 0.7 GBq/mmol (acyl-CoA synthesis car-
ried out by Prof. Sten Stymne and his work group). Reac-
tion mixture contained, in a total volume of 50 pl, 2-10 pg
membrane protein, 20 puM acyl-CoA, 5 mM NADPH
(Sigma-Aldrich, Germany), 1 mM MgCl,, 16 uM BSA,
25 mM sodium-phosphate-buffer, pH 6.5 (FAR1) or
25 mM sodium-citrate-buffer, pH 5.5 (FAR2). After
10 min incubation at 37°C reaction products were
extracted with 250 pL chloroform/methanol (1:1, v/v) and
100 pL 0.9% (w/v) NaCl solution. The suspension was
mixed and, after a brief centrifugation, 80 uL of the
chloroform phase were analyzed by TLC. ['*C]-labeled
reaction products were visualized by the phosporimager
system FLA3000 (Fujifilm), identified by external
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standards and quantified with the multi-purpose scintilla-
tion counter LS 6500 (Beckman Coulter).

FAR assays with non-labeled substrates were carried out
in the similar way but 20 uM [1-'*C]-labeled acyl-CoA
was substituted by 20 uM of 12:0-CoA, 14:0-CoA, 16:0-
CoA, 18:0-CoA, (Sigma-Aldrich, Germany) and 20:0-CoA
(Avanti, USA) and incubation time was extended to 4 h
and the assay volume was increased (500 uL). Extracted
reaction products were transmethylated and analyzed by
GC.

Semi-quantitative expression analysis of GgFAR1 and
GgFAR2 in chicken

1 ug of total RNA isolated from tissues of pectoral mus-
cles, liver, uropygial gland, brain, heart and adipose tissue
of chicken were digested with DNase I (Fermentas, Ger-
many) and reverse transcription was carried out with
AMV reverse transcriptase (Fermentas) using an oligo-
(dT)-primer. PCR was conducted with 1 uL first strand
c¢DNA as template, Taq-polymerase (Genecraft, Germany)
and primers for GgFAR1 (Forward: 5-GACACCAGAAG-
CACGGATAG-3, Reverse: 5-TCCAGTTCAGGCTGTG-
TAAG-3’, 126 bp fragment), GgFAR2 (Forward: 5-CTCC
TGCCATACTCTATGAC-3’, Reverse: 5-GACTGGGTG-
GAGAAATACTG-3’, 118 bp fragment) and B-actin (For-
ward: 5-ACCTGAGCGCAAGTACTCTG-3’, Reverse:
5-ACAATGGAGGGTCCGGA-3’, 114 bp fragment).
Reactions without reverse transcriptase were carried out
to exclude DNA contamination. Amplified fragments were
analyzed by agarose gel electrophoresis.

Additional material

Additional file 1: NCBI accession numbers of FAR proteins.

Additional file 2: Alignment of FAR1 [NCBI: NP_001026350.1] and
GgFAR1 of chicken. Alignment was carried out with ClustalX2.1 and
GeneDoc and displays the substitution of the sequence from amino acid
position 319 to position 376 in GgFART compared to FART.

Additional file 3: lllustration of the conserved domains and the
predicted transmembrane regions. TaFAR1 and TaFAR2 sequences of
barn owl are exemplary shown for avian sequences in comparison to
MmFART [NCBI: NP_080419.2] of mouse and AtCER4 [NCBI: NP_567936.5]
of Arabidopsis. TM: transmembrane region.

Additional file 4: TLC analyses of the reaction products of FART and
FAR2 assays with different acyl-CoA thioesters. Assays were
conducted with the total membrane fractions of transgenic yeast cells
expressing one of the FAR sequences from barn owl and chicken and 20
UM labeled 14:0-CoA, 16:0-CoA or 18:0-CoA under standard conditions
(ALD: fatty aldehyde, FFA: free fatty acid, R-OH: fatty alcohol).

Additional file 5: Optimization of assay conditions. (a) pH-value
dependency of TaFAR1 and TaFAR2 activity. Assays were conducted
with the total membrane fractions of transgenic yeast cells and with
labeled 16:0-CoA (TaFART) or labeled 18:0-CoA (TaFAR2) but buffer and
pH were varied namely pH 4.5 to pH 6.0: sodium-citrate-buffer, pH 6.5 to
pH 8.0: sodium-phosphate-buffer. Aldehydes and alcohols are given as
mean values of two independent assays. (b) 16:0-CoA dependency of
TaFAR1 activity with and without bovine serum albumin. Assays
were run with the given concentrations of labeled 16:0-CoA without and
with 16 UM BSA. (c) Protein linearity. Assays were carried out with the
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given mass of membrane protein harboring either TaFAR1T or TaFAR2.
Data are the sum of synthesized aldehydes and alcohols and are given
as mean values of two independent assays.

Additional file 6: GC analyses of reaction products of FAR
competition assays. Standard assays were run with the total membrane
fractions of yeast cells expressing TaFAR1 or TaFAR2 but 20 uM labeled
acyl-CoA was substituted by a mixture of unlabeled acyl-CoA thioesters
(12:0-CoA, 14:0-CoA, 16:0-CoA, 18:0-CoA and 20:0-CoA). The volume was
increased tenfold and incubation time was extended to 4 h. Extracted
lipophilic reaction products were transmethylated and analyzed by GC.
(a: 14:0-OH, b: 16:0-OH, c: 18:0-OH, d: 20:0-OH).

Abbreviations

12:0-OH: 1-dodecanol; 13:0-OH: 1-tridecanol; 14:0-OH: 1-tetradecanol; 15:0-
OH: 1-pentadecanol; 16:0-OH: 1-hexadecanol; 17:0-OH: 1-heptadecanol; 18:0-
OH: 1-octadecanol; 19:0-OH: 1-nonadecanol; 20:0-OH: 1-eicosanol; 16:1-OH: 1-
hexadecenol; 18:1-OH: 1-octadecenol; 10:0-CoA: decanoyl-CoA; 12:0-CoA:
dodecanoyl-CoA; 14:0-CoA: tetradecanoyl-CoA; 16:0-CoA: hexadecanoyl-CoA;
18:0-CoA: octadecanoyl-CoA; 20:0-CoA: eicosanoyl-CoA; 2-methyl-C14-CoA: 2-
methyltetradecanoyl-CoA; 2-methyl-C16-CoA: 2-methylhexadecanoyl-CoA; 2-
methyl-C18-CoA: 2-methyloctadecanoyl-CoA; 13:0: tridecanoic acid; 15:0:
pentadecanoic acid; 17:0: heptadecanoic acid; 19:0: nonadecanoic acid.
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