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Dacin, one metalloproteinase from
Deinagkistrodon acutus venom inhibiting
contraction of mouse ileum muscle
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Abstract

Background: Mice were bitten by five-pace vipers (Deinagkistrodon acutus), and then envenomed. It was well-known
that the snake venom mainly disturbed the blood homeostasis of the envenomed victims. Ocassionally, we found that
the venom of D. acutus could inhibit the contraction tension of mouse ileum, so in this study we aimed to identify the
active component inhibiting the contraction tension of mouse ileum in the snake venom.

Results: The active component inhibiting the contraction tension of mouse ileum, designated as Dacin, was isolated
from D. acutus venom, purified to protein homogeneity and composed of a single peptide chain, about 23 kDa analyzed
by SDS-PAGE, and 22, 947. 9 Da measured by MALDI-TOF-MS. Not only the results of its PMF blasted by Mascot indicated
that Dacin may be one snake venom metalloproteinase (SVMP), but also the results of the biochemical and in-vivo assays
as follow demonstrated that it was one SVMP: it cleaved Aa and B3 chains, not Cy of bovine fibrinogen within 1 h, and
also hydrolyzed fibrin polymer; besides its fibrino(geno)lytic activities were strongly inhibited by - mercaptoethanol, EDTA
and EGTA; and it could induce a hemorrhagic reaction under the dorsal skin of mouse. In the isolated tissue assays, Dacin
caused the concentration-dependent and time-dependent inhibitory actions on the spontaneous contraction tension of
the ileum smooth muscle of mouse, and the inhibitory effects were irreversible.

Conclusions: Taken together, for the first time one active component (Dacin, a SYMP) that irreversibly inhibited
the spontaneous contraction tension of mouse ileum has been isolated and identified from D. acutus venom. The
findings may provide not only a new insight for toxicological researches on SVMPs and venoms of the vipers, but
also a reference for clinicians to treat the snake-bitten victims. However, Dacin’s inhibitory molecular mechanism

will be further studied in the future.
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Background

The five-pace vipers (D. acutus) are endemic to Southern
China and a few of areas in Northern Vietnam. They are
partially responsible for the envenomed and deaths
resulted from the snakebites in China [1, 2]. It was well-
known that the venom of D. acutus caused the blood
homeostasis disturbances and the tissue damage of the
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victims, characterized by swelling, ecchymosis, hemorrhage,
and necrosis at the bite, sometimes extending to the
systemic symptoms [3-5]. Recently, the analysis results of
transcriptome of the venom gland cells of D. acutus
indicated that D. acutus venom chiefly contained metallo-
proteinases, C-type lectin, serine proteases, bradykinin-
potentiating peptide, PLA2 etc. and the metalloproteinases
and serine proteases in the snake venom played the pivotal
roles in envenoming of the victims [6, 7]. A lot of the
physiological or biochemical assays also revealed that the
snake venom metalloproteinases (SVMPs) and serine prote-
ases (SVSPs) had strong hemorrhagic and fibrin(ogen)olytic
activities, acted as prothrombin activators, inhibited platelet
aggregation, and hydrolyzed many structural proteins in-
cluding extracelluar matrix proteins [8—10]. Although some
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documents mentioned that the viper venoms had slightly
limited neurotoxic activities [11-13], till now, it has not
been reported that D. acutus venom may inhibit the con-
traction tension of mouse ileum.

Interestingly, while we used several venoms in our
laboratory including Bumngarus multicinctus, Gloydius
shedaoensis, D. acutus etc. collected in China, respec-
tively, to test their effect on the contraction tension of
mouse ileum, it was accidentally found that the venom
of D. acutus could inhibit the contraction tension of
mouse ileum, which seemingly performed like the
neurotoxic activities. So in this study in order to confirm
or unravel D. acutus venom’s such the function or acti-
vity, we focused on the active component, which could
inhibit the contraction tension of ileum, in the venom of
D. acutus, and isolated, purified and identified it from
the venom of D. acutus.

Methods

Snake venom and animals

Snake venoms were milked from D. acutus captured in
Chonggqing, China, and lyophilized for experimental use.
Kunming mice (20 + 2 g of body weight) were obtained
from the Laboratory Animal Center of the Third Military
Medical University. They were housed in temperature-
controlled rooms and received water and food ad libitum
until use.

Reagents

Sephadex G-50, DEAE Sepharose Fast Flow and Hitrap
Capto DEAE were purchased from GE Healthcare (USA).
Protein MW Marker (Low) was obtained from TAKARA
(Japan), ACN and Methanol from Fulltime Co. (China),
and Bovine thrombin and fibrinogen from Biosharp
(China). All other chemicals were of analytical grade.

Preparation of mouse ileum tissues

The preparation method of ileum tissues was modified
as described in several reports [14—16]. Mice were killed
by cervical dislocation and a segment of ileum approxi-
mately 15 cm long was removed from a distance of 2 cm
from the ileo-caecal junction and kept in Krebs’ solution
(118.4 mM NaCl, 4.7 mM KCl, 1.2 mM MgSQO,, 1.2 mM
KH,PO, 2.5 mM CaCl,, 250 mM NaHCO; and
11.1 mM glucose, pH 7.4) oxygenated with 95% O, and
5% CO,. The mesentery and fatty tissues were removed
and the lumen carefully flushed of its content with
Krebs” solution. Segments of ileum approximately 2 cm
in length were dissected and mounted vertically in 10 ml
water-jacketed organ baths containing Krebs’ solution
kept at 37 °C and oxygenated with 95% O, and 5% CO,.
Changes in tissue tension were measured isometrically
using force displacement transducer (Biopac, USA) and
recorded on MP36 system (Biopac, USA). The tissues
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were slowly placed under a resting tension of 0.5 g (un-
less otherwise stated) and allowed to equilibrate for an
at least 20 min period before the construction of the
agonist or antagonist concentration-response curves.
The active tension and rate of spontaneous tensions
were continuously monitored for up to 90 min through-
out the experiment. To avoid tachyphylaxis caused by
the repeated use of the same ileum segment in each
experiment, the used ileum segment was replaced with
new one [17]. In control experiments, the ileum segment
was incubated with normal saline for at least 90 min
without apparent decline in the parameters.

Isolation and purification of protein component

D. acutus venom (200 mg) was dissolved in 2.5 ml of
0.05 M Tris-HCl buffer (pH 8.4) overnight at room
temperature, and centrifuged at 5000 rpm for 10 min at
room temperature. The supernatant was loaded on a
Sephadex G-50 column (1.1 cm x 100 cm) equilibrated
with 0.05 M Tris-HCI buffer (pH 8.4), then eluted with
the same buffer at an elution rate of 0.15 ml/min. The
isolated fraction with the strongest inhibitory contractile
response of ileum muscle was loaded on a DEAE
Sepharose Fast Flow column(1.6 cm x 20 c¢m) equili-
brated with 0.05 M Tris-HCl buffer (pH 8.4), and
chromatographed with a linear gradient of 0 to 0.2 M
NaCl in 0.05 M Tris-HCI buffer (pH 8.4) at an elution
rate of 1.5 ml/min. The obtained fraction was pooled,
desalted and concentrated, then applied to a Hitrap
Capto DEAE column (0.7 cm x 2.5 ¢cm) pre-equilibrated
with 0.05 M Tris-HCI buffer (pH 7.4), and chromato-
graphed with a linear gradient of 0 to 0.8 M NaCl in
0.05 M Tris-HCI buffer (pH 8.4) at an elution rate of
1.5 ml/min. The final active peak was manually col-
lected, then desalted, lyophilized and stored at —20 °C.

Reversed-phase HPLC

The venom protein sample was applied to a Cig column
(4.6 mm x 250 mm, ¢ 5 pum), and eluted using an
acetonitrile-trifluoroacetic acid (TFA) gradient (buffer A:
0.1% TFA, buffer B: 80% acetonitrile-0.1% TFA; gradient:
0-30 min: 80% B, 30-35 min: 80—100% B) at a flow rate
of 1 ml/min. The elution peaks were monitored at an
absorbance of 215 nm. The major peak was collected
and lyophilized for mass spectrometry and other studies.

Protein concentration
Protein concentration was determined by the Lowry method
[18] with BSA as a standard.

SDS-PAGE
SDS-PAGE under reducing and non-reducing conditions
were carried out according to Laemmli method [19].
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MALDI-TOF mass spectrometry

Protein masses were determined by Matrix assisted laser
desorption/ionization time-of-flight mass spectrometry.
Spectra were recorded and analyzed using an AB SCIEX
instrument in a linear positive mode. The protein band
of interest was sliced from 15% SDS-PAGE, and reduced,
alkylated, then subjected to digestion with trypsin. The
peptide mixtures were dried and analyzed with an ABI
Voyager-DE Pro MALDI-TOF mass spectrometer. The
peptide mass fingerprint (PMF) results were compared
with the trypsin digest of protein of NCBInr database by
using Mascot software 2.3.02.

Fibrino(geno)lytic activity assay
The hydrolytic activities of the purified venom protein on
fibrinogen were evaluated by SDS-PAGE according to
Rodrigues et al. [20] with some modifications. Different
amounts of the purified venom protein (0.4 pg — 2.4 pg), or
different mixtures of 2.4 ug of the purified venom pro-
tein with the different inhibitors (0.05 M PMSF, 0.05 M
JB-mercaptoethanol, 0.05 M EGTA and 0.05 M EDTA,
respectively), were separately incubated with 20 mL of
10 mg/mL bovine fibrinogen (0.05 M PBS, pH 8.0) at
37 °C for 1 h. All the reactions were terminated with
10 mL of Tris—HCI buffer (0.05 M, pH 8.8) containing
10% (v/v) 2-mercaptoethanol, 2% (v/v) SDS, and 0.05%
(w/v) bromophenol blue. The final reaction mixtures
were analyzed by SDS—PAGE gels (12%, w/v).
Fibrinolytic activity was measured on fibrin plate.
Fibrin plate was made of 8 mL of 0.4% fibrinogen, 8 mL
of 1% agarose and thrombin (20 U) in 0.025 M Tris-HCl
buffer (pH 7.4). After the wells (3 mm in diameter) were
made in the plate, an aliquot volume (15 uL) of saline,
Dacin (8 pg) and crude venom (20 pg), respectively,
were added into the wells, then incubated at 37 °C for
12 h to visualize the transparent zones.

PLA, activity assay

PLA, activity was determined according to the methods
reported by Habermann and Hardt [21] with some
modifications. Briefly, one part of egg yolk was mixed
with 3 parts of 0.85% (V/V) NaCl and centrifuged for
2 min at 2000 rpm, and the supernatant (egg yolk
suspensions) was transferred into tubes for the following
use. Agarose (0.15 g) was dissolved in 25 mL of 50 mM
sodium acetate buffer (pH 7.5) in boiling water bath,
then the solution was cooled down to 50 °C. The cooled
agarose solution, egg yolk suspensions (500 pL) and
10 mM CaCl, solution (250 pL) were fully mixed, finally
was poured into Petri dishes. After the wells were
punched in the plate, an aliquot volume (15 pL) of
saline, purified venom protein (8 pg) solution and crude
venom (20 pg) solution, respectively, were added into
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the wells, and incubated at 50 °C for 20 h to visualize
the transparent zones.

Hemorrhagic activity

According to the method [22], Kunming mice (18-20 g)
received common feedstuff and water freely. To evaluate
the hemorrhagic activity of purified venom protein,
groups of 4 mice were injected intradermally on the dorsal
region with the following dosages, respectively: a, 100 uL
of 0.9% saline solution; b, 100 pL of saline solution con-
taining 20 pg of D. acutus venom; c, 100 uL of saline
solution containing 30 pg of purified venom protein; d,
100 pL of saline solution containing 10 pg of purified
venom protein. Two hours after the injection the mice
were sacrificed and the dorsal skin was sectioned for
observation.

Statistical analysis

Data analyses were performed using the PRISM 5.0
software package. The results regarding biological acti-
vities were presented as means and standard deviation.
Statistical analysis of significance was carried out by
one-way or two-way ANOVA, The value of p < 0.05 was
considered significant.

Results

Protein purification

From D. acutus venom, an active component was
isolated and purified to homogeneity through three-step
chromatographies including Sephadex G-50, DEAE
Sepharose Fast Flow and Hitrap Capto DEAE. By
Sephadex G-50 chromatography, three peaks were ob-
tained (Fig. 1a) and Peak II exhibited the inhibitory ac-
tivity on the contraction tension of ileum. Peak II was
further fractioned into eight peaks by DEAE Sepharose
chromatography (Fig. 1b), among which only Peak 6
showed the inhibitory activity on the contraction tension
of ileum. Finally, by Hitrap Capto DEAE chromatog-
raphy Peak 6 was isolated into two peaks (Peak a and
Peak b) (Fig. 1c). Only Peak b of both peaks presented
the strong inhibitory activity on the contraction tension
of ileum, and it showed single one protein band on SDS-
PAGE (Fig. 1d), which was named as Dacin.

Homogeneity and mass spectrometry analysis

Either under reduced or non-reduced conditions, Dacin
exhibited unique one band on SDS-PAGE (Fig. 2a). RP-
HPLC also demonstrated that Dacin was fractioned into
only one peak (Fig. 2b). Its molecular weight was about
23 kDa revealed by SDS-PAGE, and was 22,947.9 Da deter-
mined by MALDI-TOF-MS (data not shown). The PMF
results of Dacin were searched in NCBInr database by
Mascot software and it was found that Dacin highly
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Fig. 1 Chromatograms of Dacin isolated and purified from D. acutus venom and its SDS-PAGE identification. a, Chromatogram of 200 mg D.
acutus venom on Sephadex G-50 column (1.1 cm x 100 cm), eluted with 50 mM Tris-HCl buffer (pH 84) at a rate of 0.15 ml/min. Peak Il showed
Dacin’s activity. b, Chromatogram of Peak Il on DEAE Sepharose Fast Flow ion-exchange column (1.6 x 20 cm), eluted with 50 mM Tris-HCI buffer
(pH 84) at a rate of 1.5 ml/min, then combined with a linear gradient NaCl (0-0.2 M) elution. Peak 6 presented Dacin’s activity. ¢, Chromatogram
of Peak 6 on Hitrap Capto DEAE ion-exchange column (0.7 x 2.5 cm). Peak b exhibited Dacin’s activity. d 15% SDS-PAGE analysis of D. acutus
venom and Dacin. MW lane, standard protein markers (kD); lane 1, Peak b; lane 2, Peak 6; lane 3, Peak II; lane 4, D. acutus venom

matched Acl-proteinase that is a SVMP in the venom of
D. acutus from Taiwan [23].

Fibrino(geno)lytic activities

Dacin exhibited the strong fibrinogenolytic activities as it
cleaved Aa and B chains of bovine fibrinogen in the dose-
and time-dependent manners. As shown in Fig. 3a, b, when
1.2 pg of Dacin was incubated with 25 pg of fibrinogen,
Dacin preferentially hydrolyzed Aa chain followed by Bf
chain within 60 min, but did not hydrolyzed y chain.
The fibrinogenolytic activities of Dacin were completely
inhibited by chelating agents (EDTA or EGTA), as well
as fS-mercaptoethanol. In addition, it was not inhibited
by PMSF (Fig. 3c). Dacin also showed the mild fibrinolytic
activities as indicated in fibrin plate assays (Fig. 3d).

PLA, and hemorrhagic activities

In egg-yolk-suspension Petri dish assay, no cleared areas
or transparent zones were developed from circumscribed
Dacin depots (data not shown), and this indicated
obtained Dacin sample had no PLA, activity or to some
extent meant that the obtained Dacin sample did not
contain any amount of PLA, component from D. acutus

venom. Hemorrhagic activity was detected when Dacin
was injected s.c. into mice (Fig. 4).

Inhibitory effect on the contraction tension of mouse
ileum smooth

In Fig. 5, Dacin or the crude venom showed obvious inhibi-
tory effects on the contraction tension of mouse ileum
smooth muscle preparation. Dacin showed the significant
time- and dose-dependent inhibitory effects in amplitude of
active tension compared with normal saline (Krebs solu-
tion) (Fig. 6a). The most significant effect was observed at
the higher concentrations of Dacin and the t5, blockade
also exhibited the concentration-dependent manner
(Table 1). In addition, Dacin’s inhibitory effect was irrevers-
ible because the spontaneous contraction could not be re-
stored after washing (data not shown), and when Dacin
was boiled at 100 °C for 5 min, its inhibitory effect was
abolished, as Fig. 6b indicated that the boiled Dacin’s inhibi-
tory effects on contraction tension of mouse ileum were
insignificant when compared with control experiment.

Discussion
A number of studies had been made on snake venoms
and their isolated protein components for investigating
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Fig. 2 SDS-PAGE and HPLC analysis of Dacin. a, 12% SDS-PAGE -
spectrums of Dacin. Lane 7, Dacin under reducing conditions; MW
lane, standard protein markers (kD); lane 2, Dacin under non-reducing d
conditions. b, Chromatogram of Dacin sample on a analytical C18 ! 2\
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the neurotoxic and myotoxic effects [24—32]. It was well- . . o )
known that not only the neurotoxins and the mvotoxins Fig. 3 Fibrinogenolysis activity of Dacin analyzed by 12% SDS-PAGE
. ‘Y . Y . and its fibrinolysis activity tested by fibrin plate assay. a, Effects of
were extensively discovered as the main components in different concentrations of Dacin incubated at 37 °C for 30 min with
the venoms of Elapidae as well as Hydrophiidea, but also 25 g of bovine fibrinogen. Lane 1, control; lane 2, 04 pg; lane 3, 0.8 pg;
recently they were found as the minor components in the lane 4,12 pg; lane 5, 1.6 pg; lane 6, 2 ug; lane 7, 24 ug; lane 8, 24 g +
venoms of Viperidae and Crotalidae, especially Colubridae. 1 mM EDTA. b, Effects of 1.2 g of Dacin incubated at 37 °C with 25 pg
For example, Harvev et al. used the chick biventer cervicis of bovine fibrinogen for different times. Lane 1, control; lane 2, 5 min;
b€ Y R ; lane 3,30 min; lane 4, 1 h; lane 5, 3 h; lane 6, 6 h; lane 7, 12 h; lane 8,
nerve-muscle and the phrenic nerve-diaphragm prepara- 24 h. ¢, Effects of the different inhibitors on Dacin’s fibrinogenolysis
tions of rat and mouse to assess the neurotoxic and the activity. Lane 7, 5 mM EDTA; lane 2, 5 mM EGTA; lane 3, 5 mM 2-ME;
myot())(i(; effects of the venoms from eight specjes of lane 4, 5 mM PMSF; lane 5, negative control. d, Fibrin plate assay. 7,
snakes, respectively belonged to Elapidae, Viperidae and crude venom (20 Hg); 2, Dacin (15 pg); 3, Dacin (10 ug); 4, saline. Every
. sample were inoculated into the wells in fibrin plate and incubated for
Crotalidae, and found that the venoms collected from the 24 h 5t 37 °C
snakes of Elapidae, completely blocked neuromuscular J

transmissions and also caused myotoxic activities, however
the viper venoms had slightly limited neurotoxic activities
[11-13]. Afterwards, numerous studies indicated that the
venoms of Elapid snakes contained a highly amount of
neurotoxins, as well as some myotoxins, and the viper
venoms had a large amount of haemotoxins and some
slight neurotoxins [33-35].

In the venoms of most species of viper snakes, SVMPs
are the most abundant components or haemotoxins

[36]. SVMPs are able to interact with different targets
that control hemostasis or relevant tissues related to
essential physiological functions in prey and predators
and give rise to the most evident effect, hemorrhage
[37, 38]. The mechanisms of action of distinct SVMPs
involve different targets as activation of coagulation
Factor X [39], activation of Factor II [40], fibrino(gen)olytic
activity [41], binding and damage of capillary vessels [42],
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Fig. 4 Hemorrhagic activities of Dacin on the mouse dorsal skin. Mice were injected intradermally in the dorsal skin with crude venom (a, 20 ug),
or Dacin (b, 30 ug; ¢, 10 ug), or normal saline (d). After 2 h, the skin were removed and observed

among others. However, to our knowledge there are no
papers to report SVMPs present the activity of inhibiting
the contraction tension of mouse ileum.

Our preliminary test revealed that D. acutus venom
showed the activity of inhibiting the contraction tension of
mouse ileum. This clue led us in this study to focus on the
active components, which could inhibit the contraction
tension of ileum, in the venom of D. acutus. By three steps
of chromatographies the active component, Dacin, was
isolated and purified from venom of D. acutus (Fig. 1).

It was found that Dacin presented only one band on
SDS-PAGE under reducing or non-reducing conditions
(Fig. 2), and unique one peak in RP-HPLC. These results
indicated that the obtained Dacin was homogeneous.
Further, all the results of its biochemical and biological
assays, MALDI-TOF-MS and Mascot analysis, fibrino
(geno)lytic activity and metal-chelating agent’s inhibitory
assays (Fig. 3), PLA, activity assay, and hemorragic
activity assays (Fig. 4), revealed that Dacin, without
PLA, activity, was a hemorragic SVMP, which belongs
to P-I class in three classes (P-I, P-II, and P-III) of SVMP
family [43, 44]. To our knowledge, a few of published
papers reported the venoms of some vipers presented
neurotoxic effects, for example, the venom of Echis
carinatus, could inhibit the active tension of rabbit
intestine smooth muscle [45], and the mild neurotoxicity

Fig. 5 a, Trace showing the effect of Dacin (5 ug/ml) on the
stimulated (70-100 V, 0.3 ms, 0.2 Hz) ileum smooth muscle preparation.
Arrow indicates addition of Dacin. b, Control experiment without toxin
or venom. ¢, Effect of crude venom (5 pg/ml) on the stimulated
(70-100 V, 0.3 ms, 0.2 Hz) ileum smooth muscle preparation.

Arrow indicates addition of venom

4min

4min

0.2g

02g

0.2g
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on the electrically stimulated (70-100 V, 0.3 ms, 02 Hz) ileum smooth muscle of mouse. The values are the Mean + SEM counted as percent of initial. *P

was observed in severely envenomed Sri Lankan Russell’s
viper (Daboia russelii) bites [12, 13]. In the current
study, we observed that the venom of the five-pace viper
(D. acutus) inhibited the contraction tension of mouse
ileum (Fig. 5). It was evidenced that one SVMP compo-
nent, Dacin, in the venom of D. acutus played a role
of inhibiting the contraction tension of mouse ileum,
besides it showed the time-dependent and concentration-
dependent effects (Fig. 6, Table 1). Meanwhile, this inhibi-
tory response of Dacin was irreversible. Although some

Table 1 Time of causing 50% blockade (tso) and maximum
inhibition rates (%) at 60 min time point in the different
concentrations of Dacin on the contractive tension of mouse

ileum

Dacin concentration
(ug/ml)

Time of 50%
blockade® (min)

Maximum % in inhibition
(at 60 min)

PLA,s in snake venoms performed some pre-synaptic or 015 37+3
post-synaptic effects [12, 13], in this study obtained Dacin 35 24+ 3
sample from D. acutus venom had no PLA, activity and . 1749
Dacin’s activity of inhibiting the contraction tension of

mouse ileum was not involved in the action of PLA, 3 12+3
constituent in D. acutus venom. These findings may °© 9%2

provide a new insight for toxicological studies of SVMPs 12 3+1

and the venoms of vipers, and give a reference for

60%
64%
77%
83%
91%
94%

®Mean + SEM, n =3
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clinicians to treat the snake-bitten victims. However,
whether there are other toxins, which may inhibit the con-
traction tension of mouse ileum, naturally in D. acutus
venom or not, and what is the inhibitory molecular mech-
anism of Dacin, and so on, all these questions will be
worthy to be studied in the future.

Conclusion

In summary, for the first time the active component
(Dacin, a SVMP) hat irreversibly inhibited the spontan-
eous contraction tension of mouse ileum has been isolated
and identified in D. acutus venom. The findings not only
may provide a new insight for toxicological researches on
SVMPs and venoms of vipers, but also give a reference for
clinicians to treat the snake-bitten victims. However,
Dacin’s inhibitory molecular mechanism will be further
studied in the future.
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