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Copper chelation and interleukin-6
proinflammatory cytokine effects on
expression of different proteins involved in
iron metabolism in HepG2 cell line
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Abstract

Background: In vertebrates, there is an intimate relationship between copper and iron homeostasis. Copper deficiency,
which leads to a defect in ceruloplasmin enzymatic activity, has a strong effect on iron homeostasis resulting in cellular
iron retention. Much is known about the mechanisms underlying cellular iron retention under “normal” conditions,
however, less is known about the effect of copper deficiency during inflammation.

Results: We show that copper deficiency and the inflammatory cytokine interleukin-6 have different effects on the
expression of proteins involved in iron and copper metabolism such as the soluble and glycosylphosphtidylinositol
anchored forms of ceruloplasmin, hepcidin, ferroportin1, transferrin receptor1, divalent metal transporter1 and H-ferritin
subunit. We demonstrate, using the human HepG2 cell line, that in addition to ceruloplasmin isoforms, copper deficiency
affects other proteins, some posttranslationally and some at the transcriptional level. The addition of interleukin-6,
moreover, has different effects on expression of ferroportin1 and ceruloplasmin, in which ferroportin1 is decreased while
ceruloplasmin is increased. These effects are stronger when a copper chelating agent and IL-6 are used simultaneously.

Conclusions: These results suggest that copper chelation has effects not only on ceruloplasmin but also on other
proteins involved in iron metabolism, sometimes at the mRNA level and, in inflammatory conditions, the functions of
ferroportin and ceruloplasmin may be independent.
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Background
Iron and copper are cofactors for numerous enzymes
and are essential elements for all eukaryotes. They are,
however, potentially dangerous because they can react
with molecular oxygen generating reactive oxygen
species that will damage DNA, lipids and proteins [1–3],
and because they are both essential and dangerous their
levels are strictly regulated. The copper-containing
protein ceruloplasmin has an essential role in iron
homeostasis. Its catalytic site has six copper atoms, four
of which are involved in iron oxidation [4–6], converting
Fe2+ to Fe3+ without generating reactive oxygen species.

In vertebrates, two forms of ceruloplasmin are expressed;
the first is mainly produced by hepatocytes and is secreted
into the circulation [7–9]. A second form, which is gener-
ated by alternative splicing, contains a glycosylphosphati-
dylinositol (GPI) moiety instead of the normal carboxyl
terminal. The GPI anchors ceruloplasmin in the plasma
membrane. GPI-Cp was found first in astrocytes where it
represents the principal ferroxidase [10, 11]. GPI-Cp,
however, is expressed by other cellular types such as
leptomeningeal cells, Sertoli cells, and hepatocytes [12–15].
Another important ferroxidase is hephaestin, a transmem-
brane protein first detected in the small intestine [16, 17]. It
mediates iron export from enterocytes to the bloodstream.
Hephaestin and the two different forms of ceruloplas-
min are suggested to interact with ferroportin, the
only known protein involved in ferrous iron export
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from the cells [18–22]. Fe3+ generated by ferroxidase
activity, is loaded onto transferrin (Tf), the major iron-
containing protein involved in plasma iron transport and
distribution within organisms [23–25]. Diferric Tf binds to
transferrin receptor 1 (TfR1) present on the plasma
membrane of most cell types and in particular on develop-
ing red blood cells [26]. Once bound, the Tf(Fe)2-TfR1
complex is internalized into an endosome where iron is
released from Tf and is then exported to the cytoplasm by
divalent metal transporter 1 protein (DMT1) [27–29]. The
importance of ceruloplasmin in iron metabolism is
demonstrated by the fact that decreases in active cerulo-
plasmin, as seen in Wilson or Menkes disease, is charac-
terized by a strong accumulation of iron in liver, spleen,
and brain [30–34]. Moreover, different studies have
highlighted the importance of ceruloplasmin and iron
metabolism in pathologies like Alzheimer and Parkinson
diseases [35–38].
Systemic iron homeostasis is regulated by different

stimuli and, in particular, inflammation can affect the
concentration and accumulation of iron in the serum
and in different organs [39]. Hepatocytes play a critical
role in cellular iron as they are the major storage site for
excess iron and are a central regulator of proteins (trans-
ferrin, ceruloplasmin and hepcidin) that play an import-
ant role in iron homeostasis. In particular, hepatocytes
are the principal producers of the secreted peptide
hormone, hepcidin. Hepcidin, by binding to the iron
exporter ferroportin (Fpn1), induces its degradation
resulting in reduced iron uptake from the diet and iron
efflux from macrophages [40–42]. Hepcidin mRNA
expression is increased by inflammatory cytokines [43, 44].
In particular, IL-6, a proinflammatory cytokine, induces the
synthesis of hepcidin and it is responsible of a state of
hypoferremia of inflammation [44, 45]. Pro-inflammatory
cytokines can also regulate expression of other proteins
involved in iron metabolism such as Fpn1, DMT1, TfR1
and ceruloplasmin [46–50].
Although studies have highlighted the effect exerted

by copper deprivation or pro-inflammatory cytokines on
expression of proteins involved in iron metabolism
separately, it is not known if there is a synergistic effect
of copper depletion and inflammation. The aim of this
study was to analyse the effect of copper chelation and
the pro-inflammatory cytokine interleukin-6 (IL-6) on
the mRNA and protein levels of different proteins
involved in iron metabolism using the human hepatocy-
toma cell line HepG2 as a model system.

Methods
Cell culture and treatment
The hepatocytoma cell line HepG2, kindly provided by
prof. M.T. Sciortino (Department of Chemical, Biological,
Pharmaceutical and Environmental Sciences, University of

Messina, Italy), was grown in Eagle’s minimum essential
medium (EMEM) (Lonza) supplemented with 10% Fetal
Bovine Serum (Lonza), 1× non-essential amino acids
(Lonza), 2 mM L-glutamine (Lonza), 100 μg/ml Strepto-
mycin (Sigma), 100 U/ml Penicillin (Sigma), at 37 °C, and
5% CO2. 4×10

5 cells/ml were seeded in 6 well plates and
incubated for 24 h in supplemented medium. Before treat-
ment, cells were washed with PBS and incubated for an
additional 16 h in serum-free, antibiotic-free medium,
in the presence of 40 ng/ml of IL-6 (Cell Signaling
Technology) [51] and/or 300 μM Bathophenanthroline
disulfonate (BCS) (Sigma).

RT-PCR analysis
Total RNA was extracted by EuroGold TriFast reagent
(Euroclone) following the manufacturer’s instructions.
The concentration and purity of RNA was assayed at
260 nm and 280 nm by a DU 60 Beckman spectropho-
tometer. One μg of total RNA was retro-transcribed
using oligo-dT (EuroClone) and PrimeScript MMLV-RT
(Takara, Clontech) at 42 °C for 60 min followed by a
denaturation step of 15 min at 70 °C. The primers used
for PCR are listed in Table 1. The PCR reactions were
run for 30 cycles in MyCycler instruments (BioRad)
using EmeraldAmp Hot start DNA polymerase (Takara,

Table 1 list of primers used in this study

primer Sequence 5′→ 3′ Reference

Fpn1AB Reverse CATCCTCTCTGGCGGTTGTG This study

Fpn1A Forward TCCATAAGGCTTTGCCTTTCC This study

Fpn1B Forward GCATCTGGTTGGAGTTTCAAT This study

GPI-Cp Reverse GATTGGGTAGATCACATTCC [90]

sCp Reverse CCAATTTATTTCATTCAGCC [90]

CP Forward GTCTTTGACCTTATCCCTGG This study

HAMP Forward ATGGCACTGAGCTCCCAGAT This study

HAMP Reverse TTGCAGCACATCCCACACTTT This study

β-actin Reverse CACATCTGCTGGAAGGTGGA This study

β-actin Forward CATGAAGTGCGACGTTGACA This study

qPCR Primers

TNF-α Forward GCAGGTCTACTTTGGGATCATTG A generous gift
of prof. A. Mastinoa

TNF-α Reverse GCGTTTGGGAAGGTTGGA A generous gift
of prof. A. Mastinoa

IL1B Forward GCGAATGACAGAGGGTTTCTTAG A generous gift
of prof. A. Mastinoa

IL1B Reverse CACCTTCAGCTGCCCAGACT A generous gift
of prof. A. Mastinoa

β-actin Forward CATTCCAAATATGAGATGCGTTGT This study

β-actin Reverse TGTGGACTTGGGAGAGGACT This study
aDepartment of Chemical Biological Pharmaceutical and Environmental
Sciences, University of Messina, Italy
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Clontech). The PCR conditions adopted were: 98 °C for
10 s, 57 °C for 1 min, 72 °C for 30 s. The PCR amplicons
were analyzed by 2.4% agarose gel electrophoresis, and
images were acquired by KdS1D system (Kodak) and
analyzed by ImageJ 1.47v software (http://imagej.nih.gov/ij).
All the intensity values obtained for genes of interest were
normalized with respect to β-actin.
Quantitative Real Time PCR, was performed on the

same cDNA using StepOne Plus (Applied Biosystem,
LifeTechnologies) and Sybr Premix Ex Taq II (Takara,
Clontech) following manufacturer’s instructions and
primers listed in Table 1. The amplification was per-
formed at 95 °C for 30 s (1 cycle), 95 °C for 5 s and 60 °C
for 60 s (40 cycles). All samples were assayed in duplicate
of three independent experiments and the results were
normalized to the β-actin housekeeping gene using ΔΔCT

method [52, 53].

Protein extraction and Western blot analysis
To analyze proteins, after specific incubations, cells were
washed with PBS and then homogenized in specified
lysis buffers. The specific buffer used differed depending
on the protein being assayed. For immunodetection of
DMT1, H-ferritin subunit, STAT3 and pSTAT3 the lysis
buffer was composed of 25 mM MOPS pH 7.4 (Sigma),
150 mM NaCl (Applichem), 1% Triton X-100 (Sigma),
and protease inhibitor cocktail (Sigma). The cells were
homogenized by passage through a 28 gauge needle sev-
eral times and left one hour at room temperature, before
centrifugation at 15,400 × g for 30 min at 4 °C (Eppendorf
3417R). Total protein concentration of supernatant
was assayed by BCA (Pierce) and an equal quantity of
total proteins were analyzed by polyacrylamide gel
electrophoresis using 16.5% Tris-Tricine SDS-PAGE
for DMT1 and FTH1 [54], or 10% SDS-PAGE for
STAT3 and pSTAT3, after denaturation at 95 °C for
10 min in the presence of 80 mM Dithiothreitol (DTT).
For immunodetection of TfR1 and GPI-Cp cells were ho-
mogenized in a buffer composed of 25 mM MOPS pH 7.4
(Sigma), 75 mM NaCl (Applichem), and protease inhibitor
cocktail (Sigma) by passage through a 28 gauge needle
several times. The homogenate was centrifuged at 15,400
× g for 30 min at 4 °C and the pellet was incubated in
extraction buffer composed of 25 mM MOPS pH 7.4,
150 mM NaCl (Sigma), 1% Triton X-100 (Sigma), and
protease inhibitor cocktail (Sigma) for one hour before
centrifugation as described above. Total protein concen-
tration was assayed by BCA and equal quantities of total
protein were separated by 10% Tris-Glycine SDS-PAGE
after denaturation at 95 °C for 10 min in the presence of
80 mM DTT. The same membrane protein extraction
protocol was used for Fpn1 with the exception that sam-
ples were incubated for 30 min at room temperature in

the presence of 80 mM DTT before separation on 10%
Tris-Glycine SDS-PAGE [55, 56].
After electrophoresis proteins were transferred to Fluor-

oTransW PVDF Membrane (Pall Corporation) by Mini-
Trans Blot (BioRad) and membranes were blocked with
5% skim milk (Applichem) before incubation overnight
with primary antibodies that are listed in Table 2. After
washing, the membranes were incubated with HRP-
conjugated secondary antibodies and proteins were
detected by etaC Westar ECL (Cyagen). The bands were
analyzed by ImageJ 1.47v software (http://imagej.nih.gov/ij).
The intensity values obtained for proteins of interest were
normalized with respect to β-actin protein level.

Cellular copper and iron concentration
Total cellular homogenates were obtained as described
in section 2.3. For copper and iron mineralization, the
homogenate was digested with 1:1 volume ratio of 65%
HNO3 overnight at 60 °C [57].
After a dilution of HNO3 to 5%, equal aliquots of

samples were used for copper and iron determination by
a graphite furnace Perkin Elmer PinAACle 900H atomic
absorption spectrophotometer, equipped with the auto-
sampler AS900 and the Lumina cathode lamp (Perkin
Elmer). Calibration was against a Cu or a Fe standard
curve and the metal content was normalized to total
cellular proteins concentration, determined by BCA
assay kit, as described in section 2.3.

Immunodetection and in-gel oxidase activity of secreted
Ceruloplasmin
After specific treatments of cells, the medium was
collected, concentrated, dialyzed by Centricon YM-50
(Millipore), and proteins were separated by 8% SDS-
PAGE in non-denaturing condition for assay of oxidase

Table 2 list of antibodies used in this study

Target Dilution Host Company

Fpn1 1:1,000 Rabbit Novus Biologicals

DMT1 1:1,000 Mouse Novus Biologicals

TfR1 1:5,000 Mouse Invitrogen

pSTAT3 1:1,000 Rabbit Cell Signalling

STAT3 1:1,000 Rabbit Cell Signalling

FTH1 1:1,000 Rabbit Cell Signalling

Human Ceruloplasmin 1:5,000 Goat Sigma

β-Actin 1:10,000 Mouse Sigma

Anti-goat HRP conjugated 1:4,000 Rabbit Sigma

Anti-mouse HRP conjugated 1:5,000 Goat Novex, ThermoFisher

Anti-rabbit HRP conjugated 1:4,000 Goat Novex, ThermoFisher
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activity. To assay oxidase activity, gels were incubated in
0.1 M sodium acetate buffer pH 5.0 containing 0.5 μg/ml
of o-dianisidine dihydrochloride (Sigma) [58]. Alterna-
tively, samples were incubated under reducing
conditions for Western blot analysis and immunode-
tection (as described above) or gels were stained with
Coomassie Blue.

Statistical analysis
The data were analyzed by GraphPad Prism 5.0. Values
are expressed as the mean ± SEM. All assays were
performed with samples obtained from six independent
experiments. Statistical differences were determined by
paired Student’s t-test. Differences were considered
significant at p < 0.05 level.

Results
Analysis of Signal Transducer and Activator of
Transcription 3 (STAT3) transcription factor
It is known that interleukin-6 is able to induce the phos-
phorylation and nuclear translocation of the transcription
factor STAT3 [59, 60]. The level of pSTAT3 was analysed
to verify if the concentration of IL-6 and the period of
treatment adopted in the present study were able to evoke
a response in the HepG2 cell line. A concentration of
40 ng/ml IL-6 was able to activate STAT3 and the pres-
ence of BCS did not affect STAT3 phosphorylation state
in control cells or IL-6 treated cells (Fig. 1a).

Effects of BCS and IL-6 on expression of secreted form of
ceruloplasmin and determination of cellular copper
concentration
The capacity of BCS to copper deprive cells was investi-
gated by the analysis of the secreted form of ceruloplas-
min (Cp), as copper deficiency is known to result in
secretion of apoCp that is rapidly turned over [61]. Incu-
bation of HepG2 cells with BCS results in the of loss Cp
oxidase activity and immunodetectable Cp (Fig. 1b). IL-6
treatment is able to induce a strong signal of Cp protein
with respect to control conditions, yet incubation with
BCS results in the disappearance of Cp from the medium.
A densitometric analysis comparison highlighted a strong
correlation between soluble Cp oxidase activity and
immunoreactivity (Fig. 1c). Cp mRNA levels were mea-
sured to determine if the decrease in Çp protein resulted
from a decrease in Cp mRNA. Incubation with BCS
resulted in a slight but statistically significant decrement
of Cp mRNA compared to control conditions (Figs. 1d,
and e). In contrast, treatment with IL-6 caused a threefold
induction of Cp mRNA that was only slightly reduced by
incubation with BCS, indicating that the absence of Cp in
the media of cells treated with BCS was largely due to
either a slower rate of protein secretion or degradation of
the apo form of secreted Cp and was not the result of
downregulation of gene expression.
To exclude a secondary effect exerted by BCS that is

independent of copper deficiency, we have determined
by atomic absorption copper intracellular concentration

Fig. 1 Western blot and RT-PCR analysis. HepG2 cells were treated for 16 h in serum-free medium with 300 μM BCS and/or 40 ng/ml of IL-6. a Western
blot analysis of pSTAT3, STAT3, and β-actin proteins on total cell extracts as described in methods. b Western blot, Coomassie Blue staining of soluble
Cp isoform, relative to denaturing SDS-PAGE, and in gel nondenaturing SDS-PAGE enzymatic activity of concentrated and dialyzed culture medium.
Equal amounts of total proteins were loaded per lane. c relative densitometric analysis. d representative image of soluble Cp isoform RT-PCR product:
after 16 h of treatment, RNA was isolated, reverse transcribed and subjected to PCR. The amplicons relative to soluble Cp isoform and β-actin were analysed
by agarose gel electrophoresis and intensity of bands was determined by ImageJ 1.47v software (http://imagej.nih.gov/ij). The values of intensity relative to
soluble Cp were normalized by using the β-actin housekeeping gene, (e) densitometric analysis of Cp RT-PCR results. f graph relative to intracellular copper
concentration in HepG2 cells. Cells were extensively washed, lysed as described in methods and used for atomic absorption analysis. The copper content
was normalized by cellular total protein concentration. All values are expressed as means ± SEM (n= 6). All indicated differences were statistically significant
(p< 0.05). *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001. Expression levels of control condition were normalized to one, and all values are expressed as relative units
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and, in accord with the results reported above, the treat-
ment of HepG2 cells with BCS induces a strong decre-
ment of copper content and the cotreatment with IL-6
has only a slight positive effect (Fig. 1f ).

Effects of BCS and IL-6 on expression of GPI-anchored
form of ceruloplasmin
In addition to the secreted form of Cp, hepatocytes
express GPI-anchored Cp [15]. The effect of BCS alone
or in combination with IL-6 on the GPI-anchored Cp
was also investigated. At the transcriptional level (Fig. 2a
and b), IL-6 induced a strong induction in GPI-Cp
mRNA level compared to control cells. Treatment with
BCS did not affect transcription in either control cells or
in the IL-6 treated cells, indicating a behaviour very
similar to that observed for expression of secreted Cp.
The presence of BCS did not affect the amount of GPI-
Cp present at the plasma membrane (Fig. 2c, and d).
Unfortunately, the level of GPI-Cp was too low to assess
enzymatic activity.

Effect of BCS on HAMP and Fpn1 expression
Studies have shown a functional relationship between
Cp and Fpn1 in which Cp is required to convert Fpn1-
exported Fe2+ to Fe3+ for binding to Tf. Some studies

have shown a physical relationship between GPI-Cp and
Fpn1 [62, 63]. Based on these results we examined the
effects of BCS and IL-6 on Fpn1 and HAMP, the hepci-
din gene. IL-6 was able to induce transcription of HAMP
as previously reported [44], while the presence of BCS
did not affect its expression level (Fig. 3a, and b). These
results show the effect of BCS is specific for Cp expres-
sion but not for HAMP expression.
At the transcriptional level, expression of the two

spliced variant forms of Fpn1, 1A and 1B [64, 65] (Fig. 3c,
d, e, and f) were both decreased by BCS or IL-6. BCS had
a similar effect on both isoforms while the negative effect
of IL-6 is less evident in variant 1A (50%) versus variant
1B (30%) (Fig. 3d, and f). Incubation of HepG2 cells with
both IL-6 and BCS resulted in a small additive decrease,
however, it did not reach statistical significance. A differ-
ence in the amount of Fpn1 protein was also observed
when cells were treated with BCS or IL-6 (Fig. 3g, and h).
Fpn1 levels were decreased 50 or 30% respectively.
Further, incubation with BCS and IL-6 resulted in an
additional protein decrement, which was statistically
significant, indicating an additive effect of the two sub-
strates. These experimental results highlight that the effect
of this pro-inflammatory cytokine and copper chelation
can negatively regulate Fpn1 expression.

Fig. 2 RT-PCR and Western blot analysis of GPI-Cp expression levels. HepG2 cells were treated for 16 h in serum-free medium with 300 μM BCS
and/or 40 ng/ml IL-6. a and b after 16 h of treatment, RNA was isolated, reverse transcribed and subjected to PCR. The amplicons relative to GPI-Cp isoform
and β-actin were analysed by agarose gel electrophoresis and intensity of bands was determined by ImageJ 1.47v software (http://imagej.nih.gov/ij). The
values of intensity relative to GPI-Cp were normalized by using the β-actin housekeeping gene. c representative image of GPI-Cp isoform protein relative
to membrane proteins extracts analysed by western blot. d densitometric analysis of GPI-Cp isoform protein. The values are normalized by β-actin protein
level. All values are expressed as means ± SEM (n = 6). All indicated differences were statistically significant (p < 0.05). *p ≤ 0.05; **p ≤ 0.01;
***p ≤ 0.001. Expression levels of control condition were normalized to one, and all values are expressed as relative units
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Effects of BCS and IL-6 on TNF-α and IL-1β expression
To test if the effect exerted by BCS alone or in combin-
ation with IL-6 was direct or indirect by production of
other pro-inflammatory cytokines, the mRNA level of
TNF-alpha and IL-1B was also assayed by qPCR. Unfortu-
nately, the CT values relative to these two classes of
mRNA were very low (CT 36–40) respect to β-actin
mRNA level, and were not considered for further analysis.

TfR1, and DMT1 expression
Hepatocyte iron uptake through TfR1 and DMT1 is
important in conditions of iron deficiency and it is also

important under culture conditions in which the amount
of iron is limited. For these reasons, the expression levels
of these two proteins were investigated under copper
chelation and proinflammation. Treatment of HepG2
cells with BCS resulted in a 50% decrease in TfR1
protein levels (Fig. 4a and b) and IL-6 had almost the
same effect. Incubation of cells with both BCS and IL-6
led to a further decrease of TfR1 indicating an additive
effect. Given the functional relationship of TfR1 and
DMT1 in TfR1-mediated iron uptake, the levels of
DMT1 were also analysed. Incubation of HepG2 cells
with BCS or IL-6 resulted in about a 50% decrement of

Fig. 3 RT-PCR analysis of HAMP gene, and RT-PCR and western blot analysis of Fpn1 expression levels. HepG2 cells were treated for 16 h in
serum-free medium with 300 μM BCS and/or 40 ng/ml IL-6. a after 16 h of treatment, RNA was isolated, reverse transcribed and subjected to PCR. The
amplicons relative to HAMP and β-actin genes were analysed by agarose gel electrophoresis and intensity of bands was determined by ImageJ 1.47v
software (http://imagej.nih.gov/ij). The values of intensity relative to HAMP were normalized by using the β-actin housekeeping gene. b densitometric
analysis of HAMP gene RT-PCR results (c) representative image of Fpn1A isoform RT-PCR product analysed as described above and (d) densitometric
analysis relative to Fpn1A RT-PCR results. The values were normalized by using the β-actin housekeeping gene. e representative image of Fpn1B isoform
RT-PCR product analysed as described above and (f) densitometric analysis relative to Fpn1B RT-PCR results. The values were normalized by using the
β-actin housekeeping gene. g representative image of Fpn1 protein immunoblot result relative to membrane proteins extracts. Equal amounts of proteins
were loaded per lane. h densitometric analysis of Fpn1 protein. The values are normalized to β-actin protein level. All values are expressed as means ± SEM
(n= 6). All indicated differences were statistically significant (p < 0.05). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. Expression levels of control con-
dition were normalized to one, and all values are expressed as relative units
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DMT1 protein, while treatment with both BCS and IL-6
led to an additional decrement, although it did not reach
statistical significance (Fig. 4c, and d).

FTH1 expression and cellular iron concentration
To test if the experimental conditions affected intracel-
lular iron level, we examined ferritin heavy chain
(FTH1) protein levels, an indicator of cytosolic iron. The
treatment of cells with IL-6 did not affect FTH1 levels.
In contrast, BCS treatment resulted in an increase in
FTH1 levels suggesting an increase of cellular iron
content (Fig. 5a, and b). Further, the addition of IL-6
together with BCS increased FTH1 protein levels sug-
gesting the intracellular iron levels are greatly increased
in copper chelation and proinflammatory conditions. To
exclude secondary effects, the cellular iron concentration
was determined and, as shown in Fig. 5c, the concentra-
tion of iron is coherent with ferritin protein amounts,
indicating that BCS is able to induce an increase of
intracellular iron concentration.

Discussion
The copper-containing protein Cp has a key role in iron
metabolism and its activity and level relies on appropri-
ate copper acquisition. Accumulation of newly synthe-
sized Cp is dependent on copper availability, as the
stability of the apoprotein is severely reduced [61, 66, 67].
In Wilson Diseases caused by a mutation in ATP7B gene,
a Golgi copper transporter, Cp is produced in the

apo-form that is secreted in the blood stream where it is
rapidly degraded [68]. Decreased active Cp results in iron
accumulation in liver and other organs due to a failure to
export cellular iron [30–34]. Our study in the HepG2 cell
line confirms that a deficiency of copper induces a strong
reduction in the secreted form of Cp. Treatment of cells
with IL-6 led to a strong induction in Cp mRNA and
protein levels, consistent with previously published data
[46, 47, 69]. The IL-6 induction of Cp mRNA, however,
was not able to reverse the negative effect on protein
secretion exerted by BCS. Of interest is that our results
showed that the presence of BCS had minimal influence
on stability of GPI-Cp present on the plasma membrane;
unfortunately, we were not able to demonstrate a linear
correlation between the amount of protein present and its
enzymatic activity. These data are in accord with Mostad
et al. [14], who demonstrated that copper deficiency has
different effects on GPI-Cp protein level in different
organs. Copper deficiency in the spleen induces a strong
decrement of GPI-Cp protein levels, while only a slight re-
duction of the protein was found in liver. The different
response of the two Cp isoforms to a copper deprivation
state could be explained by different kinetic of secretion
or degradation rates of the apoprotein dependent on
tissue type.
Our results suggest that copper deficiency has an

effect on other proteins involved in iron metabolism. It
is known that cellular export of Fe(II) by Fpn1 requires
Cp to oxidize Fe2+ to Fe3+. Studies using transfected C6

Fig. 4 Western blot analysis of TfR1, and DMT1. HepG2 cells were treated for 16 h in serum-free medium with 300 μM BCS and/or
40 ng/ml IL-6. a representative image of TfR1 protein immunoblot relative to membrane proteins exstracts. Equal amounts of proteins
were loaded per lane. b densitometric analysis of TfR1 protein. c representative image of DMT1 protein immunoblot relative to total cell extracts, after
electrophoresis on 16.5% Tris-Tricine SDS-PAGE (d) densitometric analysis of DMT1 protein. The values are normalized to β-actin. All values are expressed as
means ± SEM (n= 6). All indicated differences were statistically significant (p< 0.05). *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001. Expression levels of control condition
were normalized to one, and all values are expressed as relative units
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and HeLa cells showed that Cp activity is necessary for
the stability of plasma membrane Fpn1 [63, 70, 71], and
an interaction between the two proteins was also
hypothesized [62]. The results reported in this study
highlight that Fpn1 is only partially influenced by GPI-
Cp protein amount; in fact, in conditions in which cells
are treated with BCS, the decrement observed for Fpn1
protein is much more pronounced than that observed
for GPI-Cp. This discrepancy can be explained consider-
ing the enzymatic activity rather than the protein
amount. As mentioned, we do not know if the GPI-Cp
protein present on the plasma membrane is also enzy-
matically active. A slight correlation is seen comparing
Fpn1 and sCp protein amounts. The differences
observed between our results and the reported published
data could be explained with the use of different experi-
mental models. In glioma cell lines the GPI-Cp is the
isoform that is mostly highly expressed while in hepato-
cytes sCp is the most highly expressed isoform [11].
Different experimental models have reported some con-
trasting results such as animals fed a copper-deficient
diet showed an increment of Fpn1 protein when whole
liver was analysed. This apparent discrepancy could be
due to a different response to the same stimuli between

the different cells present in this organ, e.g., Kupffer cells
and hepatocytes [14, 72, 73].
To determine if copper deficiency could affect Fpn1

levels by inducing hepcidin we assayed HAMP mRNA
levels. In our cells, HAMP mRNA levels were not af-
fected by copper chelation. In contrast, copper chelation
affected Fpn1 transcripts including both Fpn1A and
Fpn1B mRNA variants. To determine if the decrease ob-
served was linked to a post-transcriptional regulation
mechanism mediated by intracellular iron concentration,
H-ferritin subunit protein was assayed as a measure of
cellular iron content. Our results showed increased
levels of H-ferritin suggesting an increase in cytosolic
iron concentration. This result was confirmed by the
determination of cellular iron concentration. Increased
intracellular iron would be expected to increase Fpn1
translation (IRP) and mRNA stability (mR485-3p), as in-
creased Fpn1 activity is required to export cellular iron
[74–76]. The finding that copper chelation leads to
increased cellular iron retention and decreased Fpn1
mRNA suggests a novel mechanism of Fpn1 regulation.
The response of HepG2 cell line to BCS is indicative of
a state in which the cells protect themselves from the ac-
cumulation of intracellular iron, probably because a not

Fig. 5 FTH1 expression levels and intracellular iron concentration. a representative image of FTH1 protein immunoblot relative to total cell
extracts, after electrophoresis on 16.5% Tris-Tricine SDS-PAGE. b densitometric analysis of FTH1 protein. The values are normalized to β-actin. c graph
relative to intracellular iron concentration in HepG2 cells. Cells were extensively washed, lysed as described in methods, and used for atomic absorption
analysis. The iron content was normalized by cellular total protein concentration. All values are expressed as means ± SEM (n= 6). All indicated differences
were statistically significant (p< 0.05). *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001. Expression levels of control condition were normalized to one, and all values are
expressed as relative units
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functional ceruloplasmin could cause a condition of iron
overload. For this reason, it is possible that in the first
period of treatment, ferroportin is downregulated
causing an increase of cellular iron concentration. As
consequence, TfR1-mediated iron uptake is also reduced.
Some studies have reported that hepcidin activity can be
dependent on copper availability [77]; in fact, it has an
“ATCUN” (amino-terminal Cu-Ni)-binding motif in the
N-terminal of the mature protein capable to bind copper
and nickel, even if a recent study has questioning this
possibility [77–79]. Tselepis et al. highlighted that the
incapacity of hepcidin to bind copper, drastically reduce
the capacity of hepcidin to induce ferroportin degrad-
ation [77]. Considering the results reported in this study
and the possibility that hepcidin is not able to reduce
ferroportin protein amount in condition of copper defi-
ciency, a transcriptional downregulation of ferroportin
can contrast a potential iron overload.
The apparent functional relationship between Fpn1

and Cp appears to break down in the face of inflamma-
tory stimuli. Cp mRNA isoforms are strongly upregu-
lated by IL-6, while Fpn1A and Fpn1B mRNAs seem to
be downregulated. This effect is also seen on the protein
level. The lower level of Fpn1 protein might be
explained in part due to the post-translational hepcidin-
mediated degradation mechanism [41], as hepcidin is
upregulated in inflammation [44]. Our data confirm that
in HepG2 cells treatment with IL-6 strongly induces
HAMP gene expression. However, independent of post-
translational regulation, our data show that IL-6 reduces
Fpn1 mRNA. These results are consistent with published
data, which demonstrated that IL-6 is able to downregu-
late Fpn1 levels in the HepG2 cell line [48] and upregu-
late the mRNA level of sCp [46, 47]. We demonstrate
that the GPI-Cp isoform is also upregulated and the
protein level of the two isoforms follow the same behav-
iour. The findings that IL-6 results in increased Cp levels
but decreased Fpn1 indicates that the functions of these
two proteins are not obligatorily linked together. As
mentioned above, it is reported that treatment with IL-6
causes an increase in Cp mRNA level, probably in part
by the transcription factor FOXO1 [47]. This protein is
involved in cellular response to oxidative stress and
upregulation of Cp can enter in the mechanism of cor-
relation between oxidative stress and metal metabolism
[80, 81]; in fact, CP ferroxidase activity is important in
the loading of Fe(III) on transferrin, reducing the dele-
terious effect of Fe(II) oxidation and production of
radical oxygen species [23, 82]. In this way, Cp enters in
the circuit to limit NTBI (non-transferrin bound iron) in
the serum with hepcidin that is strongly upregulated in
IL-6 induced inflammation and, with its activity, limits
the presence of iron in the plasma [43]. In addition to
ferroxidase activity, Cp has other functions as Cu(I)

oxidation [83], NO-oxidase and NO2
−synthase [84], and

superoxide dismutase [85]. Moreover, an interaction
between Cp and myeloperoxidase (MPO) was also dem-
onstrated and it is supposed that Cp inhibits prooxidant
activity of MPO [86]; in fact, in systemic vasculitis, the
interaction between Cp and MPO is prevented by auto-
antibodies against MPO [87]. In vitro experiments have
highlighted an interaction between Cp, MPO and lacto-
ferrin (Lf ). This ternary complex has different functions
as reduce the activity of MPO, incorporate Fe(III) on Lf
and protect Cp from proteolytic cleavage [88]. For these
reasons, Cp can have a fundamental role in inflamma-
tion conditions and in autoimmunity diseases.
The dysfunction of cellular iron export resulting from

copper chelation has an effect on TfR1-mediated iron
delivery, resulting in decreased expression of TfR1 and
DMT1. These results are consistent with published
studies in which copper deficiency led to a decrement in
TfR1 protein in the liver [73, 89].

Conclusions
In summary, here we have demonstrated, using a hepa-
toma cell line, that IL-6 results in increased Cp levels
and decreased Fpn1, indicating that the functions of
these two proteins are not obligatorily linked together.
Moreover, we have demonstrated that copper chelation

has effects not only on Cp but also on other proteins in-
volved in iron metabolism, sometimes at the mRNA level.
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