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Abstract
Background: Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications
of proteins and cellular constituents. However, functional consequences of such modification
remain poorly defined. In the present study, we examined acetaldehyde reaction with human
carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target
protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic
properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde
reaction.

Results: Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN))
caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular
mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated
the presence of an unmodified protein, as expected. Mass spectra of CA II treated with
acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation
between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein
structure. This reaction was highly specific, given the relative abundance of over 90% of the
modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on
average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases"
to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed
decreased CA enzymatic activity.

Conclusion: The acetaldehyde-derived modifications in CA II molecule may have physiological
consequences in alcoholic patients.
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Background
Acetaldehyde, a product of ethanol metabolism, has been
suggested to play a pivotal role in the toxicity of ethanol
to human tissues [1-3]. It can form covalent, stable or
unstable adducts with amino acids and nucleophilic bio-
molecules [4-10]. The adduct formation may result in
changes in the physicochemical properties of proteins,
nucleic acids, and lipids, disturb normal cellular func-
tions, and create adverse immunological responses [8,11-
15].

Aldehyde incorporation can lead to the formation of sev-
eral different types of protein modifications, which have
been previously identified in in vitro studies and in studies
on alcohol abusers in vivo [6,8,14,16,17]. Acetaldehyde
reacts primarily with reactive lysine residues of preferred
target proteins [18-25]. It appears that under appropriate
reducing conditions, proteins with abundant amounts of
reactive lysine residues are modified at acetaldehyde con-
centrations that may be present in tissues after alcohol
intake [8,25-28]. Figure 1 depicts the common reaction
mechanism of the side chain amino groups (ε-NH2) of
lysine residues with acetaldehyde, in the absence (A) and
presence (B) of a reducing agent NaBH3(CN). In the
former case, an unstable adduct (a "Schiff base") is
formed, while in the latter case a "Schiff base" is further
reduced to form a stable adduct (an N-ethyllysine resi-
due). In the absence of reducing agents, stable cyclic imi-
dazolidinone structures are also formed in a reaction
between acetaldehyde and the free α-amino group of the
aminoterminus of haemoglobin [16,20,29,30]. Previous
studies have identified adducts with erythrocyte mem-
brane proteins [31], haemoglobin [5,20,32-34], albumin,
transferrin and lipoproteins [14,35,36], tubulin [21], eth-
anol-metabolizing cytochrome P450IIEI enzyme [37],
collagens [38], and ketosteroid reductase [39].

In the present study, we used carbonic anhydrase (CA)
isozyme II as a model to investigate the effects of acetalde-
hyde reaction with the protein. CA II is a well character-
ized enzyme expressed in several organs, including the

brain, stomach, gut, kidney, and reproductive organs, and
it is highly abundant in erythrocytes [40]. It is one of the
most efficient enzymes known in the animal kingdom,
catalyzing the reversible hydration of carbon dioxide at a
rate of 1.4 × 106 molecules per second [41]. CA II was our
choice of model protein, because its structural and cata-
lytic properties are well known and it contains 24 lysine
residues (out of 260 amino acids), each a potential site for
acetaldehyde reaction. Currently, there are also valid
methods to monitor CA II catalytic activity to assess the
functional consequences of acetaldehyde reaction. Impor-
tantly, CA II catalytic activity is essential for several physi-
ological processes such as gastric acid formation,
alkalization of pancreatic juice and bile, renal proton
secretion, bone resorption, and cerebrospinal fluid secre-
tion [40]. Although proteomic in vivo evidence of this
modification is still lacking, one would expect a wide vari-
ety of adverse effects in these physiological processes, if
CA II activity was disturbed due to acetaldehyde reaction
in alcoholic patients.

Methods
Production of recombinant human CA II
The recombinant human CA II enzyme was produced in
E. coli [42] and purified to homogeneity using CA inhibi-
tor affinity chromatography as described in [43].

Labelling of CA II with acetaldehyde
Human blood samples and recombinant human CA II
enzyme were treated with various concentrations of
acetaldehyde either in the presence or absence of a reduc-
ing agent, NaBH3(CN). All reagents were maintained and
pipeting was performed at +4°C to minimize acetalde-
hyde evaporation. The sample tubes containing 1/10
diluted (in H2O) blood or CA II enzyme with or without
acetaldehyde in H2O were tightly sealed and incubated at
37°C for 2 hr. Then 10 mM NaBH3(CN) or equal volume
of H2O was added to each sample tube, and the incuba-
tion at +37°C was continued for 22 hr. After the incuba-
tion the samples were quickly cooled down to +4°C.

Isoelectric focusing and SDS-PAGE
IEF was carried out using Novex Pre-Cast vertical IEF gels
(pH 3–10) (Invitrogen, Carlsbad, CA) containing 2%
ampholytes. One μg samples of recombinant CA II pro-
tein untreated or treated with 10 mM NaBH3(CN) and
various acetaldehyde concentrations were applied to each
lane. The electrophoreses were performed in an Xcell
SureLock™ Mini-Cell unit (Invitrogen) at a constant
power of 2 W per gel for 2 hr with a voltage limit of 500
V. The polypeptides were visualized using Colloidal Blue
staining kit (Invitrogen).

All the reagents for SDS-PAGE were from Invitrogen
except for the protein markers that were obtained from

The reaction mechanism of lysine residues with acetalde-hyde, in the absence (A) and presence (B) of a reducing agent NaBH3(CN)Figure 1
The reaction mechanism of lysine residues with 
acetaldehyde, in the absence (A) and presence (B) of 
a reducing agent NaBH3(CN).
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Bio-Rad Laboratories (Richmond, CA). The electro-
phoreses were performed in an Xcell SureLock™ Mini-Cell
unit (Invitrogen) under reducing conditions, using
NuPAGE™ 10% Bis-Tris gels. The polypeptide bands were
stained using Colloidal Blue staining kit (Invitrogen).

CA activity measurements
CA catalytic activity was first determined using a slightly
modified end-point titration method of Maren et al.
[44,45]. Briefly the steps included: 150 ng of human CA II
or 1 μl of 1/10 diluted blood sample was added to 500 μl
of ice-cold assay buffer (20 mM imidazole, 5 mM Tris
(BASE), 0,2 mM p-nitrophenol). The cuvette containing
the sample and assay buffer was placed in a Lambda 35
UV/VIS (Perkin Elmer Instruments, Waltham, MA) spec-
trophotometer and 500 μl of ice-cold CO2-saturated H2O
was added into the cuvette. The exact time for the yellow
color disappearance was counted. In the control experi-
ments without the CA II enzyme, the color disappeared in
50 sec. Statistical significance of the enzyme activity
results was assessed using Student's t test and was denoted
as p values.

The enzymatic activities of native recombinant human CA
II and the enzyme treated with 100 mM acetaldehyde
under reducing conditions were also assayed using an
Applied Photophysics (Leatherhead, UK) stopped-flow
instrument. Reaction was measured using 0.2 mM phenol
red as an indicator, in 10 mM Hepes, 0.1 M Na2SO4, pH
7.5, for a period of 10–100 sec. To determine the kinetic
parameters, CO2 concentration ranged from 1.7 to 17
mM. Kinetic parameters were obtained from Lineweaver-
Burk plots, as reported earlier, and represent the mean
from at least three different determinations.

Sample preparation for mass spectrometry
Due to a low tolerance of ESI for high salt concentrations,
protein samples were first desalted using a PD-10 column
(Amersham-Biosciences, Billingham, UK) equilibrated in
advance with 10 mM ammonium acetate (pH 6.8) buffer
and ten 1-mL fractions were collected. Fractions 3–5 were
combined and concentrated to ~500 μL using an Ultra-
free-0.5 (10-kDa cut-off) centrifugal filter device (Milli-
pore, Billerica, MA, USA). Protein concentrations were
determined by absorbance at 280 nm using a calculated
extinction coefficient of ε280 = 50070 M-1 cm-1. For mass
spectrometry, samples were further diluted with ace-
tonitrile/water/acetic acid (49.5:49.5:1.0, v/v) solution to
an approximate concentration of 5 μM.

Mass spectrometry
All experiments were performed on a 4.7-T Bruker Bio-
APEX-Qe Fourier transform ion cyclotron resonance (FT-
ICR) mass spectrometer (Bruker Daltonics, Billerica, MA,
USA), interfaced to an external Apollo-II™ electrospray

ionization (ESI) source. Protein samples were directly
infused at a flow rate of 1.5 μL min-1. ESI-generated ions
were externally accumulated in an RF-hexapole ion trap
for 400 ms and transmitted through a high-voltage optics
region to an Infinity ICR cell for "sidekick" trapping, con-
ventional "RF-chirp" excitation and broadband detection.
For each spectrum, a total of 256 co-added (512-kWord)
time-domain transients were zero-filled once prior to fast
Fourier transform and magnitude calculation. Frequency-
to-m/z calibration was performed externally with respect
to the ions of an ES Tuning Mix (Agilent Technologies,
Santa Clara, CA, USA) calibration mixture. All data were
processed using Bruker XMASS 7.0.8 software.

Results
Isoelectric focusing and SDS PAGE
Recombinant human CA II treated with various concen-
trations of acetaldehyde was subjected to isoelectric focus-
ing (Fig. 2, upper panel). The pI value of untreated
enzyme was about 7.9. Acetaldehyde treatment in the
presence or absence of a reducing agent NaBH3(CN)
(sodium cyanoborohydride) caused shifts in the pI values.
In the presence of the reducing agent, the isoelectric point
became slightly more basic after acetaldehyde treatment.
The results shown in Fig. 2 (lower panel) showed a con-
centration dependent shift to lower pI with increased
aldehyde concentrations. Even 100 μM acetaldehyde
caused a visible change in the charge of the CA II mole-
cule. Bands with pI values of 6.8, 7.1 and 7.3 were identi-
fied with increasing acetaldehyde concentrations.
Without NaBH3(CN), all changes in isoelectric points
were toward more acidic values. Acetaldehyde concentra-
tions of 100 μM-10 mM produced two extra bands of pI
values at 7.3 and 7.4. At 10 mM concentration, the 7.3 pI
value became most prominent. Surprisingly, the pattern
was completely different when acetaldehyde reached 100
mM concentration. The protein appeared as a smear with
three faint bands of 6.4, 6.7 and 6.9 pI values. It is notable
that NaBH3(CN) alone had no effect on the isoelectric
point of CA II (Fig. 2, upper panel).

SDS PAGE was performed on acetaldehyde-treated CA II
samples. The results in Figure 3 demonstrate that 100 mM
acetaldehyde in the presence of NaBH3(CN) produced a
shift toward a slightly higher molecular mass. In contrast,
the same acetaldehyde concentration without the reduc-
ing agent produced a faint smear, which could indicate a
partial degradation of the protein or it may be a conse-
quence of unwanted interactions between the ampholytes
and acetaldehyde in a medium.

Kinetic analyses
CA activity measurements were performed using a previ-
ously described assay method of Maren [44,45] combined
to a spectrophotometric color determination. First, we
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determined the CA activities of blood samples treated
with acetaldehyde. Figure 4 demonstrates that 100 mM
acetaldehyde produced over 40% reduction in CA activity
both in the presence (p = 0.016) and absence (p = 0.012)
of NaBH3(CN). A 10 mM concentration of acetaldehyde
also reduced the CA activity in the presence of
NaBH3(CN), but this change did not reach statistical sig-
nificance (p = 0.052). In the second set of experiments, we
measured enzymatic activities of CA II samples in analo-
gous conditions as described above. Acetaldehyde (100
mM) in the presence of NaBH3(CN) caused 23.7% reduc-
tion in CA II activity (p = 0.001)(Fig. 5). In the absence of
NaBH3(CN), the activity was only slightly reduced (p =

0.045). All other changes observed were non-significant
(p > 0.05).

The enzyme activity data obtained from the stopped-flow
analysis are shown in Table 1. This method indicated that
the acetaldehyde-modified enzyme is about one-third as
active as the native CA II (considering the specificity con-
stant kcat/Km). On the other hand, the inhibition constant
of acetazolamide is about three times higher for the mod-
ified protein compared to the native one.

Mass spectrometry
Figure 6A presents an ESI FT-ICR mass spectrum measured
for native CA II. A protein ion charge state distribution
from 13+ to 32+ representing apo-protein (i.e., protein
without a bound Zn2+ cation) was observed. The most
abundant isotopic mass (mm.a.) of the protein was deter-
mined to be 29098.07 ± 0.07 Da which agrees well with
the calculated value (mm.a. = 29097.93 Da for
CAH2_HUMAN (Swiss-Prot entry P00918), with the ini-
tial methionine removed and the second residue changed
from serine to alanine due to the used cloning strategy).

Figure 6B presents an expanded view on the charge state
24+ of the mass spectra of native CA II (Figure 6A) as well
as CA II incubated in the presence of NaBH3(CN), acetal-
dehyde (AA), and both. In the presence of NaBH3(CN),
the mass spectrum was identical to that observed for
native CA II. In contrast, when reacted with 100 mM

Isoelectric focusing of human recombinant CA II treated with various concentrations of acetaldehyde (AA) in the presence or absence of a reducing agent, 10 mM NaBH3(CN)Figure 2
Isoelectric focusing of human recombinant CA II 
treated with various concentrations of acetaldehyde 
(AA) in the presence or absence of a reducing agent, 
10 mM NaBH3(CN).

SDS-PAGE of human recombinant CA II treated with acetal-dehyde (AA)Figure 3
SDS-PAGE of human recombinant CA II treated 
with acetaldehyde (AA). The acetaldehyde concentra-
tions are shown in the figure. Some of the samples were sub-
jected to reducing conditions using NaBH3(CN).
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acetaldehyde in the absence of NaBH3(CN), the mass of
CA II increased by ~26 Da (mm.a. = 29124.09 ± 0.09 Da),
consistent with a "Schiff base" formation between acetal-
dehyde and a primary amino group, e.g., ε-NH2 of lysine
(Δmtheor = +26.02 Da). This reaction was highly specific
given that the modified protein form was present for as
much as 90% as compared to the unmodified form. In the
presence of NaBH3(CN), a more drastic change was
observed. Evenly distributed new signals appeared in the
mass spectrum, with a mass increase of ~n × 28 Da, n rang-
ing from 9 to 19 (for the three most abundant forms, mm.a.
= 29462.51 ± 0.06 Da (n = 13), 29490.54 ± 0.05 (n = 14),
and 29518.59 ± 0.05 Da (n = 15)). This is consistent with
the formation of multiple stable covalent acetaldehyde
adducts with CA II, most probably N-ethyllysine residues
(Δmtheor = +28.03 Da).

Discussion
Acetaldehyde has been demonstrated to be able to bind to
several different proteins, both in vitro and in vivo. The
structural modifications due to acetaldehyde binding may
affect the conformation, acid-base properties, and/or
hydrogen-bonding patterns of amino acids on the surface

or within the active site of an enzyme, thereby disrupting
the normal protein function. Although several lines of
previous investigations during the last two decades have
focused on the generation of acetaldehyde adducts, it has
turned out to be a great challenge to explore the func-
tional consequences of these acetaldehyde-induced mod-
ifications without proper functional assays. Acetaldehyde
is a very reactive compound, and thus, it has been partic-
ularly difficult to determine the presence of unstable
adducts formed under non-reductive conditions.

The present results showed that human CA II is a good tar-
get protein for acetaldehyde modification. It has a high
number of lysine residues (24 in total) in its primary
sequence. The highly sensitive mass spectrometric
method indicated that, under reducing conditions, each
CA II enzyme molecule had reacted with up to 19 (14 on
average) acetaldehyde molecules to form stable covalent
adducts (N-ethyllysine residues). Although such a high
number of acetaldehyde was bound to the enzyme, the
modified protein still retained much of the enzymatic
activity. Using the modified Maren's method combined
with a spectrophotometric analysis, we found that the
enzyme activity decreased 23.7% under supraphysiologi-
cal (100 mM) acetaldehyde concentrations in reducing
conditions. The stopped-flow CA activity assay showed a
significantly greater decrease in the enzyme activity when
compared to the spectrophotometric assay. Even though

Carbonic anhydrase activity of human blood samples treated with various concentrations of acetaldehyde (AA) in the presence or absence of a reducing agent, 10 mM NaBH3(CN)Figure 4
Carbonic anhydrase activity of human blood samples 
treated with various concentrations of acetaldehyde 
(AA) in the presence or absence of a reducing agent, 
10 mM NaBH3(CN). The activity assay was performed 
using a previously described assay method of Maren [44,45]. 
The obtained values from three assays are indicated as mean 
+/- standard deviation.

Carbonic anhydrase activity of human recombinant CA II treated with various concentrations of acetaldehyde (AA) in the presence or absence of a reducing agent, 10 mM NaBH3(CN)Figure 5
Carbonic anhydrase activity of human recombinant 
CA II treated with various concentrations of acetal-
dehyde (AA) in the presence or absence of a reduc-
ing agent, 10 mM NaBH3(CN). The activity assay was 
performed using a previously described assay method of 
Maren [44,45]. The obtained values from three assays are 
indicated as mean +/- standard deviation.
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these assay methods produced different rates for the
acetaldehyde-induced inhibition, both techniques clearly
indicated that acetaldehyde binding reduces the catalytic
activity.

Interestingly, only a single acetaldehyde molecule had
reacted with CA II under non-reductive conditions, form-
ing the unstable covalent adduct (''Schiff base''). Due to
high mass resolution inherent for the FT-ICR technique,
unequivocal differentiation between the ''Schiff base''
(+26.02 Da) and the substituted amine (+28.03 Da), i.e.
~2-Da mass difference at 29 kDa, was possible (Figure 1).
According to the mass spectrometry, over 90% of the
enzyme molecules were modified with acetaldehyde.
However, repeated measurements with the acetaldehyde-
treated sample, after being stored two weeks at 4°C, indi-
cated the presence of an unmodified CA II only, consistent
with unstable character of the formed ''Schiff base''. To
further localize the modification site, both native and

acetaldehyde-treated CA II samples were subjected to on-
line pepsin digestion prior to mass spectrometry.
Although the resulting peptide maps had 100% sequence
coverage, the observed peptides were markedly larger (up
to 10 kDa) in the presence of acetaldehyde, possibly due
to decreased protease activity, making spectral assign-
ments occasionally ambiguous. However, two of the
observed 6.3-kDa peptic peptides had a mass difference of
26.01 Da, suggesting the modification site within the first
56 residues. Owing to the experimental difficulties in
obtaining good tandem mass spectra for these large peptic
peptides, more experiments with different proteases are
warranted for the further identification of the modifica-
tion site in CA II.

Both SDS-PAGE and isoelectric focusing suggested that
100 mM acetaldehyde might induce degradation of CA II
protein under non-reductive conditions. However, mass
spectrometry did not show any evidence for the acceler-
ated degradation of CA II (i.e., no change in the absolute
intensity of the intact protein or evidence of the peptide
signals), suggesting that the smear observed in isoelectric
focusing may have resulted from chemical interactions
between ampholytes and acetaldehyde under non-reduc-
tive conditions.

More detailed structural studies are needed to characterize
the acetaldehyde-induced modifications of CA II. This
enzyme, although only weakly expressed in liver [46,47],
represents an excellent model for both structural and
functional studies of acetaldehyde modification. Its crys-
tal structure and kinetic properties have been reported by
several groups [48-53]. These studies can be expanded to
other CA isozymes that are more highly expressed in the
liver, including CA III, VA, and CA XIV [54-56]. These
enzymes may also be susceptible to modification because
acetaldehyde can reach over 100 μM concentration in the
liver of alcoholic patients [57], even though concentra-
tions are lower, though still in a micromolar range, in the
blood [58,59].

Accurate acetaldehyde determination from biological
samples has been extremely challenging. It is widely
accepted that single doses of ethanol do not significantly
increase blood free acetaldehyde concentrations [60,61].
Nonetheless, such doses may elevate acetaldehyde levels
within intracellular compartments or cell membranes.
Baraona et al. [62] tested the blood of 5 healthy individu-

Table 1: Kinetic and inhibitory properties of CA II measured by the stopped-flow method

Enzyme kcat (s-1) KM (mM) kcat/KM (M-1s-1) KI (acetazolamide) (nM)

Native CA II 1.40·106 9.3 1.5·108 12
CA II + AA + NaBH3(CN) 0.77·106 9.3 0.5·108 35

ESI FT-ICR mass spectra of human recombinant CA IIFigure 6
ESI FT-ICR mass spectra of human recombinant CA 
II. (A) A broadband mass spectrum of native CA II (different 
protein ion charge states have been assigned as z + = [CA II 
+ zH]z+) and (B) an expanded view on the charge state 24+ 
for native CA II, and CA II samples treated with 100 mM 
acetaldehyde in the absence and presence of NaBH3(CN). 
The determined masses have been indicated. In panel B, the 
mass scale in Da is set for the charge state 24+.
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als and 6 alcoholic patients and showed that most of the
blood acetaldehyde was present in the erythrocytes after
alcohol consumption. In vivo, acetaldehyde concentration
within the erythrocytes is about 3–10 times higher than in
the plasma [62,63]. Although acetaldehyde concentra-
tions are probably highest in the liver, the site of ethanol
metabolism, acetaldehyde modified protein epitopes
have been also located to other organs and cell types. Pos-
itive immunohistochemical staining for acetaldehyde
adducts has been demonstrated in the brain, heart, skele-
tal muscle, and erythrocytes [14,64-66]. All of these tis-
sues and cells contain several CA isozymes that may
become functionally impaired because of adduct forma-
tion. Therefore, these modifications deserve further study
to determine the exact submolecular defects caused by
acetaldehyde in each isozyme.

Conclusion
In the present study, we showed that acetaldehyde, the
first metabolite of ethanol, can modify the ubiquitous
enzyme, carbonic anhydrase. Mass spectrometric analysis
indicated that one of the primary NH2 groups (e.g., in
lysine side chain) in the CA isozyme II had reacted with
acetaldehyde under non-reducing condition, consistent
with a "Schiff base" formation. In reducing conditions,
each CA II molecule had reacted with 9–19 (14 on aver-
age) acetaldehyde molecules, consistent with further
reduction of the "Schiff bases" to substituted amines (N-
ethyllysine residues). The latter structural change led to
decreased enzyme activity, which may have important
physiological consequences in alcohol abusers.
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