BNMC Biochemistry

Review

@,

BiolVled Central

Ubiquitin-mediated signalling and Paget's disease of bone

Robert Layfield* and Barry Shaw

Address: School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK

Email: Robert Layfield* - robert.layfield@nottingham.ac.uk; Barry Shaw - barry.shaw@nottingham.ac.uk

* Corresponding author

Published: 22 November 2007
BMC Biochemistry 2007, 8(Suppl 1):S5 doi:10.1186/1471-2091-8-S1-S5

This article is available from: http://www.biomedcentral.com/1471-2091/8/S1/S5

© 2007 Layfield and Shaw; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Multiple steps in the RANK-NF-«B signalling pathway are regulated by ubiquitylation. Mutations
affecting different components of this pathway, including the ubiquitin binding p62 signalling adapter
protein, are found in patients with Paget's disease of bone or related syndromes. Here, we review
the molecular defects and potential disease mechanisms in these conditions and conclude that the
mutations may confer a common increased sensitivity of osteoclasts to cytokines, resulting in
disordered NF-kB-dependent osteoclast function. Modulation of the osteoclast RANK-NF-«xB
signalling axis may represent a viable therapeutic strategy for Paget's disease and other conditions
where excessive bone resorption or remodelling is a feature.

Publication history: Republished from Current BioData's Targeted Proteins database (TPdb;

http://www.targetedproteinsdb.com).

Role of ubiquitin and the UPS in Paget's disease

of bone and related disorders

Background

Vertebrates regulate bone mass by the process of remodel-
ling, which is controlled by the opposing actions of bone-
forming osteoblasts and bone-resorbing osteoclasts.
Increased osteoclast-mediated bone resorption is a con-
sistent feature of skeletal disorders including osteoporo-
sis, theumatoid arthritis and Paget's disease of bone
(PDB). This article focuses on the role of ubiquitin and
the ubiquitin proteasome system (UPS) in the latter con-
dition, PDB [MIM 167250, 602080], which is common in
Caucasian populations, affecting up to 3% of individuals
aged over 55 years [1]. In this case, increased resorptive
activity of Pagetic osteoclasts results in secondary
increases in osteoblast activity, causing focal increases in
bone turnover. The new bone formed tends to be of
abnormal architecture, accounting for symptoms such as
bone pain, skeletal deformity, deafness, neurological
complications and susceptibility to pathological fractures,

which are seen in up to one third of patients [2]. Osteosa-
rcoma is a rare complication of PDB, with the majority of
adulthood osteosarcomas occurring in patients with this
disease [3]. Several PDB-related syndromes show overlap-
ping and/or often more severe symptoms or earlier onset
than PDB, including familial expansile osteolysis (FEO
[MIM 174810]), expansile skeletal hyperphosphatasia
(ESH), early-onset familial PDB, and juvenile hyperphos-
phatasia (also known as juvenile PDB). Other disorders in
which characteristic Pagetic changes also feature include
inclusion body myopathy associated with PDB and fron-
totemporal dementia (IBMPFD) [4,5].

Molecular defects in PDB and related syndromes

Although a slow virus infection of osteoclasts was in the
past proposed to be the cause of PDB [6], numerous fam-
ilies have since been documented in which PDB is inher-
ited in an autosomal-dominant fashion [7], establishing a
genetic basis for the disease. More recently, it was realised
that germline mutations affecting the Sequestosome 1
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(SQSTM1) gene, which encodes the p62 signalling
adapter protein, commonly occur in PDB patients; these
mutations are present in up to 50% of familial and 20%
of sporadic cases of PDB [5]. Positional cloning studies
have shown that FEO, ESH, and early-onset familial PDB
are each caused by different mutations in the receptor acti-
vator of NF-kB gene (RANK) that all affect the signal pep-
tide of the gene product by introducing amino acid
insertions of different lengths [8-10]. RANK is a member
of the TNF receptor family [11] that, upon engagement of
RANK:-ligand (RANK-L), directly interacts with TRAFG,
leading to downstream activation of several signalling
pathways including an NF-kB pathway that is regulated by
p62 ([12]; Figure 1). Homozygous deletions of OPG, the
gene encoding the soluble RANK-L decoy receptor osteo-
protegerin (OPG), have been identified as a cause of juve-
nile hyperphosphatasia [13,14]. IBMPFD was recently
shown to be caused by mutations in the VCP (valosin-
containing protein, also know as p97) gene [4].

Signalling pathway affected in PDB and related syndromes
Induction of RANK signalling by RANK-L, a cytokine that
is highly expressed in the bone marrow environment, can
potentially lead to the activation of AP-1, NFATc1 and NF-
kB transcription factors, all of which are important for
osteoclastogenesis and/or activity [15]. However, only the
signalling pathway resulting in NF-xB activation is
thought to involve OPG-RANK and p62 (Figure 1), each
of which are (separately) mutated in PDB and related syn-
dromes, indicating that altered function of this particular
signalling cascade is likely to be important in PDB aetiol-

ogy.

Central to several steps within the RANK-NF-«xB pathway,
as well as many other signalling pathways, is the reversible
covalent attachment of ubiquitin (ubiquitylation) to sig-
nalling proteins [16]. Upon attachment, ubiquitin acts as
a scaffold in protein-protein interactions involving the
ubiquitylated target. Ubiquitin can be assembled into pol-
ymeric structures or ‘chains’ with different topologies [17]
that, in some regards, resemble the different glycan struc-
tures within glycoproteins. These different chain topolo-
gies result from the way in which ubiquitin attaches; the
extreme C-terminal Gly76 residue of ubiquitin becomes
linked via an isopeptide bond to an g-amino group of a
Lys side chain in the target protein. In a polyubiquitin
chain, any of the seven Lys residues in an individual ubiq-
uitin may form a link with adjacent ubiquitin moieties.
Polyubiquitin chains are most commonly linked via
Lys48 of ubiquitin, a modification that generally targets
the ubiquitylated protein for recognition and degradation
by the 26S proteasome complex (the so-called ubiquitin
proteasome system, or UPS). By contrast, chains linked
via Lys63 generally serve non-degradative roles, such as
facilitating protein-protein interactions involved in the
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formation of multi-protein signalling or DNA repair com-
plexes.

Although temporal aspects of the RANK-NF-«kB signalling
pathway are not fully established, key steps (some with
known dependence upon ubiquitylation) include (see
Figure 1): engagement of RANK by RANK-L, which is
antagonised by OPG-RANK-L binding; association of
TRAF6 with activated RANK; binding of p62 to TRAFG6;
Lys63-linked autoubiquitylation of TRAFG6, catalysed by
its intrinsic E3 ubiquitin ligase activity; p62-aPKC-medi-
ated phosphorylation and activation of I-xB kinasefd
(IKKR); activation of the TAB1-TAB2-TAK1 complex by
ubiquitylated TRAF6, also leading to phosphorylation
and activation of IKKf, and phosphorylation of I-«B by
the activated IKKf} complex and subsequent Lys48-linked
polyubiquitylation. These steps result in the 26S proteas-
omal degradation of I-kB, entry of NF-«B to the nucleus
and activation of target gene expression [16].

Whilst RANK and OPG clearly function as upstream com-
ponents of this signalling pathway, it is presently unclear
as to the role(s) played by VCP in osteoclast NF-«xB signal-
ling. To date, certain IBMPFD mutations in VCP have
been found to disrupt endoplasmic reticulum-associated
degradation (ERAD), an ubiquitin-dependent process
[18]. Previous studies have shown that VCP can also
directly regulate NF-xB signalling in an osteosarcoma
(osteoblast-derived) cell line [19], and that VCP binding
to ubiquitylated I-kB may promote I-kB degradation [20].
Determining the NF-xB activation status of osteoclasts
from IBMPFD patients would, therefore, clearly be most
informative. The proposed role of p62 in regulating RANK
signalling is discussed in more detail below.

Disease mechanism(s) in PDB and related syndromes

Consistent with the involvement of RANK-L, OPG, RANK
and p62 in an NF-«B signalling pathway that is key to
osteoclastogenesis and function, there is increasing evi-
dence to support the hypothesis that disordered RANK-
NF-«B signalling may be central to the aetiology of PDB
and related syndromes. Firstly, the RANK insertion muta-
tions associated with FEO, ESH and early-onset familial
PDB are proposed to result in constitutive activation of
NF-«B signalling in vitro (based on results from cell-based
reporter assays) [8-10]. This effect may be due to intracel-
lular retention of the mutant receptors. Secondly, as OPG
is a negative regulator of RANK signalling, loss of OPG
wild-type function in juvenile hyperphosphatasia is also
predicted to promote RANK-NF-«xB signalling in
vivo[13,14]. Finally, two separate groups have shown that
under certain conditions, ectopic expression of PDB
mutant p62 evokes more efficient activation of NF-«kB sig-
nalling than the wild-type sequence in cell-based reporter
assays [21,22]. In addition, RAW264.7 cells more readily
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Schematic overview of the RANK-NF-«B signalling pathway. The cytokine RANK-L binds to the receptor protein
RANK in an interaction antagonised by OPG-RANK-L binding. Upon receptor stimulation by RANK-L, TRAF6 associates with
RANK, and the p62 adapter protein binds to TRAF6. Lys63-linked autoubiquitylation of TRAF6 is catalysed by its intrinsic E3
ubiquitin ligase activity (and may be regulated by p62). Through its N-terminal PBl domain p62 binds aPKC, stimulating the
activation of I-kB kinaseB (IKKB). Activation of the TABI-TAB2-TAKI complex by binding ubiquitylated TRAF6 also leads to
phosphorylation and activation of IKKB. Phosphorylation of |-kB by the activated IKKB complex and subsequent Lys48-linked
polyubiquitylation leads to 26S proteasomal degradation of I-kB. This allows NF-kB to enter the nucleus and activate target
gene expression. VCP may regulate the proteasomal degradation of I-kB.
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form osteoclast-like cells (OLCs) when transfected with
PDB mutant p62 rather than the wild-type. Furthermore,
OLCs derived from monocytes from SQSTM1 mutation-
carrying patients (K378X, truncating) showed increased
bone resorption in vitro when compared with those
derived from control monocytes [22]. These observations
are again consistent with the activation of NF-xB-depend-
ent responses.

The precise mechanism by which p62 mutations result in
disordered RANK-NF-«kB signalling in vivo, as is suggested
by in vitro data, is not clear. Certainly, the expression levels
of p62 directly influence signalling; depletion of p62 in
cultured cells severely inhibits NF-«xB signalling [16] and
accordingly, genetic inactivation of p62 in mice abrogates
NF-«B signalling, resulting in defective osteoclastogenesis
when animals are challenged with parathyroid hormone
related protein (a bone-resorbing factor; [21]). A recent
study noted, however, that in reporter assays, over-expres-
sion of wild-type p62 attenuated (rather than potentiated)
NF-kB activation when compared with an empty vector
control [22]. PDB mutations do not, however, appear to
affect p62 protein half-life [22], suggesting that their
mechanism of action is unlikely to involve altered protein
turnover and expression levels.

In addition, it is noteworthy that evidence to support con-
stitutive NF-xB activation by PDB mutant RANK [8-10]
was derived from cell-based reporter assays in which NF-
kB activity was higher for the mutant only when protein
levels were normalised to that of transfected wild-type
RANK (there appeared to be less PDB mutant RANK than
wild-type, presumably reflecting their different half-lives).
It is questionable whether this normalisation was appro-
priate; indeed a recent study [23] indicated that ‘physio-
logical” expression (i.e. not over-expression) of mutant
RANK in stably-transfected cell lines did not result in con-
stitutive activation of NF-kB.

Notably, all 12 of the separate SQSTM1 mutations identi-
fied to date cluster in and around the C-terminal ubiqui-
tin-associated (UBA) domain of p62 [24]. The UBA
domain mediates the ubiquitin binding properties of the
protein. These mutations include five truncating muta-
tions that delete most or all of the UBA domain, and seven
missense mutations located within the UBA domain
[22,25-30]. Functional studies using protein binding
assays show that all of the p62 PDB mutations manifest as
loss of ubiquitin binding in vitro[31,32], indicating that
the disease mechanism is likely to involve the inability of
mutant p62 to establish regulated protein-protein interac-
tions with an ubiquitylated osteoclast protein(s). Interest-
ingly, the VCP mutations found in IBMPFD patients also
cluster in the N-terminal ubiquitin binding region of the
protein [4]. It is unclear, however, whether they similarly
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affect ubiquitin binding, perhaps to overlapping p62 sub-
strates. Preliminary genotype/phenotype analyses support
the significance of p62-mediated ubiquitin binding in
osteoclast homeostasis and further verify the existence of
a causal relationship between p62 mutations and PDB
[33]. Several observations suggest that PDB severity (e.g.
decreased age at diagnosis, increased number of bones
affected) increases with the severity of the effects of differ-
ent mutations on p62-ubiquitin binding. For example,
the p62 truncating mutations, which remove most or all
of the UBA domain, are the most detrimental to p62-
ubiquitin binding function in vitro, resulting in a more
severe phenotype than the missense mutations [30,22].
Moreover, the missense mutation that was found to be the
least detrimental in in vitro p62-ubiquitin binding assays
(P387L) appears to produce a relatively mild phenotype
in affected individuals [29].

It is also interesting to note that similar p62 germline
mutations appear to account for both monostotic and
polyostotic forms of PDB (in the latter, non-contiguous
skeletal segments are affected), suggesting that additional
local factors (e.g. mechanical loading, trauma etc.) may in
some cases act as a disease trigger.

Key questions to resolve include what the ‘normal’ ubiq-
uitylated targets of p62 in osteoclasts are and how loss of
ubiquitin binding by p62 affects RANK-NF-kB signalling
and ultimately leads to PDB. One of the proposed func-
tions of p62 (which is in fact multi-functional [16]) is to
regulate NF-«B signalling in response to nerve growth fac-
tor (NGF), by controlling the Lys63-linked polyubiquit-
ylation of TRAF6 [34]. Whether p62 performs a similar
role in RANK signalling awaits confirmation, although
interestingly, p62-mediated ubiquitylation of TRAF6 in
response to NFG appears to require the ubiquitin binding
activity of p62 [34]. This observation is somewhat at vari-
ance with the finding that a p62 construct carrying the
most common P392L PDB missense mutation, and which
causes loss of ubiquitin binding of p62 [31], apparently
evokes more efficient activation of NF-kB signalling in
reporter assays than wild-type p62 [21]. However, a more
recent study also using reporter assays noted that
although PDB mutant p62 constructs activated NF-kB sig-
nalling more efficiently than wild-type, compared with an
empty vector control, all p62 constructs showed reduced
activation, suggesting the mutations may actually dimin-
ish a repressive function of p62 with respect to RANK-NF-
kB signalling [22]. To what extent these discrepancies rep-
resent differences in experimental protocols and perhaps
the artificial effect of protein over-expression remains to
be seen, but clearly further studies are required to precisely
clarify the effects of p62 (and indeed RANK) mutations on
NF-«B signalling in more physiologically relevant settings.
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Disease models, knockouts and assays

The various cell-based reporter assays and in vitro models
for differentiating cells (e.g. RAW264.7 or monocytes) car-
rying PDB mutant p62 into OLCs [21,22] represent poten-
tial assay systems for developing high-throughput screens
for the identification of lead compounds which may be
useful in correcting disordered osteoclast NF-kB signal-
ling. Although p62 null mice exist, in the context of PDB,
they simply serve to confirm the important role(s) of p62
in osteoclastogenesis; the community awaits with antici-
pation the generation of animal models carrying p62 PDB
mutations, and their subsequent phenotypic characterisa-
tion.

Disease targets and ligands

Current treatments for PDB are mainly limited to anti-
resorptive therapy using bisphosphonates, which selec-
tively target and induce apoptosis of osteoclasts via a
mechanism thought to involve inhibition of protein pre-
nylation [35].

If the disordered RANK-NF-«B signalling inferred from
the in vitro studies of PDB mutant p62 (and mutant forms
of other components in the RANK-NF-«B signalling axis)
is indeed confirmed to be a reflection of disease-related
events in vivo, the disease aetiology in PDB is likely to
involve abnormal sensitivity of osteoclast RANK-NF-xB
signalling in response to cytokines (and 1,25-dihydroxy-
vitamin D3) [36]. It also seems reasonable that disordered
NF-«B signalling, arising via a different mechanism, could
similarly underlie the disease mechanism in sporadic PDB
as phenotypically sporadic and familial PDB are very sim-
ilar.

Several strategies, based upon manipulation of osteoclast
NF-kB signalling, are under development or envisaged to
treat PDB syndromes. For example, hormones, drugs or
antibodies could be used (or have been applied) to regu-
late the expression of RANK-L and OPG, or binding of
RANK-L to RANK (reviewed in [37] and discussed in
[38]). For example, Amgen have developed a monoclonal
antibody to RANKL (AMG162) which is currently in clin-
ical trials for various bone diseases (see [39] and refer-
ences therein); previously they also developed an OPG
fusion protein (OPGfc) which was subsequently with-
drawn from clinical practice. Additionally, recombinant
OPG has been used to treat a patient with juvenile PDB
[40].

Alternatively, RNA silencing in vivo could be used to neu-
tralise mutant p62 transcripts, as attempted in Hunting-
ton's disease [41]. Finally, directly interfering with the
p62-TRAF6 interaction using a short peptide equivalent to
the TRAF-binding domain sequence of p62, offers the pos-
sibility of selectively targeting TRAF6-mediated NF-kB sig-
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nalling without affecting AP-1- or NFATcl-mediated
processes. In the case of NGF signalling (which also
depends upon TRAF6 and p62), this approach was
recently used in cultured cells to inhibit NGF-induced
neurite outgrowth, a process dependent on TRAF6-p62-
mediated NF-«B signalling [42]. The caveat to all of these
approaches is achieving osteoclast-specific effects,
although combining any potential compound with a
vehicle or carrier which has a high affinity for bone matrix
(a property which underlies the apparent selectivity of the
bisphosphonates) may prove to be a useful delivery sys-
tem.

New frontiers in drug discovery

Modulation of the osteoclast RANK-NF-«B signalling axis,
and its control by ubiquitylation, may represent a viable
therapeutic strategy for the treatment of PDB syndromes
as well as other diseases where excessive bone resorption
or remodelling is a feature, including osteoporosis, peri-
dontal disease and rheumatoid arthritis. Indeed, the dem-
onstration that inhibition of NF-xB signalling (using a
cell-permeable peptide inhibitor of the IKK{} complex)
blocks osteoclastogenesis and prevents in vivo inflamma-
tory bone destruction [43] is entirely supportive of this
concept. A more complete and precise description of the
molecular events that underlie RANK-NF-kB signalling in
osteoclasts is clearly a next step towards this important
goal.
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