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Abstract

Huntington's disease and several of the spinocerebellar ataxias are caused by the abnormal
expansion of a CAG repeat within the coding region of the disease gene. This results in the
production of a mutant protein with an abnormally expanded polyglutamine tract. Although these
disorders have a clear monogenic cause, each polyglutamine expansion mutation is likely to cause
the dysfunction of many pathways and processes within the cell. It has been proposed that the
ubiquitin proteasome system is impaired in polyglutamine expansion disorders and that this
contributes to pathology. However, this is controversial with some groups demonstrating
decreased proteasome activity in polyglutamine expansion disorders, some showing no change in
activity and others demonstrating an increase in proteasome activity. It remains unknown whether
the ubiquitin proteasome system is a feasible therapeutic target in these disorders. Here we review
the conflicting results obtained from different assays performed in a variety of different systems.

Publication history: Republished from Current BioData's Targeted Proteins database (TPdb;

http://www.targetedproteinsdb.com).

Protein pathway in disease

Nine neurodegenerative disorders are caused by the
abnormal expansion of polyglutamine-encoding CAG
repeat sequences: Huntington's disease (HD), spino-cere-
bellar ataxia (SCA) types 1, 2, 3, 6, 7 and 17, spinobulbar
muscular atrophy and dentatorubral-pallidoluysian atro-
phy [1]. These disorders are generally inherited in an auto-
somal dominant manner (except for spinobulbar
muscular atrophy, which is X-linked) and the underlying
mutations are thought to act predominantly via toxic
gain-of-function mechanisms [2]. Mutant proteins with
expanded polyglutamine tracts form aggregates in the
affected tissues [3-5]. Recently, polyglutamine-containing

aggregates were reported in SCA 8 [6]. SCA 8 is caused by
the expansion of a CTG repeat in the 3' end of the ataxin
8 gene, which was previously thought to be untranslated.
The polyglutamine-containing protein associated with
SCA 8 is now thought to be encoded by a previously uni-
dentified antiparallel transcript spanning the repeat in the
CAG direction [6].

HD and many of the dominant SCAs are caused by the
expansion of a polyglutamine tract within the coding
region of the huntingtin and ataxin genes, respectively.
Although HD and the SCAs are caused by single muta-
tions (the expansion of a CAG tract), the expression of a
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mutant protein containing a polyglutamine expansion is
thought to have a variety of cellular consequences and
elicit many pathogenic mechanisms. For example, in HD,
mutant huntingtin has been proposed to cause the dysreg-
ulation of transcription [7], either through the interaction
of transcription factors (e.g. CBP) with mutant huntingtin
or by the polyglutamine expansion disrupting wild-type
huntingtin's role in regulating transcription [8,9]. Wild-
type huntingtin has been shown to bind repressor ele-
ment-1 silencing transcription factor/neuron-restrictive
silencer factor (REST/NRSF), sequester it in the cytosol
and reduce its inhibitory effect on promoters containing
neuron-restrictive silencing elements such as the BDNF
promoter, thus increasing the production of BDNF. This
control is lost in HD; there is a reduced interaction
between mutant huntingtin and REST/NRSF, leading to a
reduction in the production of BDNF [8,9]. Expression of
mutant huntingtin has also been shown to cause excito-
toxicity and damage mitochondria, leading to the
increased generation of destructive oxygen free radicals
and to alterations in energy production [10], disruption of
transport along axons [11] and impairment of endocyto-
sis and intracellular vesicle transport [12]. Although con-
troversial, mutant huntingtin has also been proposed to
impair the ubiquitin proteasome system (UPS) [13-15].
The polyglutamine expansion mutation is thought to
cause disruption of the same systems and elicit similar
pathogenic mechanisms in SCA [16].

The UPS is a major protein degradation pathway in cells,
typically degrading short-lived and damaged proteins
[17,18]. The proteasome also has a role in cell signalling,
as it degrades many regulatory proteins, such as p53 and
IKKB, and protein subunits. Recently, it was proposed that
the proteasome has a role in normal synaptic function
and plasticity, and is involved in the NMDA-dependent
remodelling of the protein composition of synapses [19].
Therefore, the proteasome not only represents a degrada-
tion pathway but is also a major regulator of normal cel-
lular and physiological functioning. Impairment of the
UPS will thus have considerable consequences on the cell
and indeed the organism.

Two mechanisms have been proposed to account for the
UPS impairment observed by some groups in poly-
glutamine expansion disorders. The first arises from the
observation that polyglutamine aggregates in cell models,
brains from HD transgenic mouse models and HD post
mortem brains become labelled upon immunocytochem-
istry with antibodies against ubiquitin and proteasome
subunits [3,20,21], suggesting that the sequestration and
altered subcellular localisation of UPS components could
impair its normal function. However, inhibition of the
proteasome has been demonstrated in cells co-expressing
a GFP-degron construct (see Models, Knockouts and
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Assays) and pathogenic huntingtin exon 1 constructs in
the absence of visible aggregates [14]. In addition, there is
some evidence to suggest that some molecules are not
sequestered tightly into aggregates but are only loosely
associated and can freely diffuse [22]. The second model
comes from both in vitro and cell model data suggesting
that expanded polyglutamine-containing proteins are not
easily degraded by the eukaryotic proteasome, which can
only accommodate unfolded proteins [23,24]. This
model proposes that proteins containing expanded poly-
glutamine tracts may block the proteasome, thus prevent-
ing the entry of other substrates. Although it has been
documented that synthetically generated polyglutamine
aggregates do not inhibit 26S proteasome function in
vitro[14], it has recently been shown that fibrillar species
purified from HD transgenic mouse and human HD post
mortem brains do decrease proteasome activity in
vitro[25]. In addition, many of the wild-type ataxins have
been shown to interact with components of the UPS.
Yeast two-hybrid assays have demonstrated an interaction
between ataxin-7 and the S4 subunit of the 19S proteas-
ome [26], ataxin-1 and the ubiquitin-like protein A1Up
[27], and ataxin-3 and the ubiquitin and proteasome
binding factor HHR23B [28]. It has been proposed that
these wild-type ataxins have a role in UPS function; thus
it is possible that expansion of the polyglutamine repeats
in these proteins may disrupt interactions with the UPS
and compromise its function.

The impairment of the UPS in polyglutamine expansion
disorders is controversial since some groups demonstrate
a decrease in proteasome activity [13-15,29,30], some
show no change in activity [31,32] and others demon-
strate an increase in proteasome activity [33,34]. These
conflicting results come from different assays performed
in a variety of different systems [35] (which may indeed
represent different stages of disease) and are discussed in
more detail below.

Models, knockouts and assays

A variety of approaches have been used to study UPS func-
tion in polyglutamine expansion disorders (see Table 1)
[36]. Each assay has advantages and disadvantages, and
could be monitoring a different part of the UPS pathway.
In addition, these assays have been used to assess UPS
activity in different models (stable, inducible and tran-
sient cell models, transgenic Drosophila, transgenic mice
and human post mortem samples, see Table 2). These
models could represent different stages of the human dis-
ease, express the polyglutamine-containing protein at dif-
ferent levels under the control of different promoters, and
in the case of Huntington's disease models, express hunt-
ingtin transgenes of different sizes (e.g. full length hunt-
ingtin or smaller exon 1 fragments).
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Table I: Assays used to study UPS function in polyglutamine expansion disorders. See text for further details.

Method Measures UPS component Advantages Disadvantage Reference
assayed
Fluorogenic substrate 20S proteasome activity Direct measure of Quantitative analysis of Does not measure [14, 15,25, 30, 32, 33]

peptides

chymotrypsin-like, trypsin-
like or peptidyl-glutamyl

proteolytic activity in cell
and tissue lysates

ubiquitylation, substrate
interaction, unfolding or

activity of the 20S
proteasome

Degron-tagged
fluorescent proteins

Levels of fluorescent reporter
protein tagged with a signal
targeting it for proteasome
degradation

Levels of endogenous UPS  Degradation of well Ubiquitylation,
substrates characterised, endogenous proteasome activity,
UPS substrates e.g. p53 chaperones

Yeast two-hybrid assay Interaction of polyglutamine-

containing proteins with UPS

components with polyglutamine
proteins
In vitro assay of Effect of synthetic peptides, Activity of purified
proteasome activity purifed aggregates and fibrillar  proteasomes

species on activity of purified
proteasomes

Proteasome activity and
targeting to proteasome

Proteasome subunits and
components that interact

effects on other
components of the UPS
other than proteasome
activity

Does not measure all
aspects of UPS function

Functional analysis of UPS
system in vivo

[13, 14, 29, 37, 38]

Functional analysis of Levels of endogenous [15]

entire UPS system. substrate may be altered

Substrate expressed at due to effects of the

endogenous levels polyglutamine expansion
independent of the UPS

Shows direct interactions ~ Does not give functional [26-28]
data

Shows direct effects of Does not measure other  [14, 23-25]

poly-glutamine containing  components of the UPS
proteins on proteasome

activity

Proteasome activity can be monitored by the proteolysis
of small fluorogenic substrates specific for the chymot-
rypsin-like, trypsin-like or peptidyl-glutamyl activity of
the 20S proteasome. These have been used to measure
activity in lysates from neuro2A cells stably expressing N-
terminal huntingtin with an expanded polyglutamine
tract [15], SH-SY5Y stably expressing polyglutamine-
green fluorescent protein constructs [32], transgenic mice
[33], human HD post-mortem brains and patient skin
fibroblasts [30]. These peptides have also been used to
measure the activity of purified 26S proteasomes incu-
bated with either synthetic polyglutamine-containing
proteins [14] or aggregates and filaments purified from
transgenic mice and human brains [25]. One issue with
assays of isolated proteasome activity is that modest
changes in proteasome number/activity may not be rate-

limiting for substrate clearance. It is likely that ubiquitin
conjugation and, in some situations, transport of ubiquit-
ylinated proteins to the proteasome could be more impor-
tant physiological regulators.

This problem has been partially addressed by measuring
proteasome activity using reporter molecules comprising
a fluorescent protein (e.g. enhanced green fluorescence
protein (EGFP)) fused to a short sequence that targets the
protein for proteasome degradation (termed a degron),
[13,14,29,37,38]). This approach was initially used to
generate a HeLa cell line stably expressing a reporter con-
sisting of a short degron, CL1, fused to the carboxy-termi-
nus of EGFP [13]. More recently, transgenic mice
expressing EGFP tagged to a degron [38] and Caenorhabdi-
tis elegans expressing a ubiquitin-conjugated dsRed

Table 2: Model systems used to study UPS function in polyglutamine expansion disorders. See text for further details.

Model Methods used in conjunction Additional notes Reference

Human post mortem brain Immunocytochemistry, assay of proteasome [3, 20, 30]
activity in lysates using fluorescent substrates

Human patient skin fibroblasts Proteasome activity using fluorescent [30]
substrates

Ré/2 transgenic mouse model of HD Proteasome activity, immunocytochemistry, R6/2 mouse generated by Mangiarini et al. [60] [21, 34]

Ré/1 transgenic mouse model of HD Proteasome activity Ré/1 mouse generated by Mangiarini et al. [60] [15]

HD94 conditional mouse model of HD Chymotrypsin-like, trypsin-like or peptidyl- HD94 conditional mouse generated by Yamamoto et al. [33]
glutamyl activity in lysates [61]

SCA 7 knock-in mouse model Crossed to a transgenic mouse expressingan  SCA 7 transgenic mouse generated by Yoo et al. [62] [31]
EGFP—-degron reporter

Transgenic Drosophila models of Genetic screens [56]

polyglutamine expansion disorders
Cell models of HD and SCA, stable cell

lines and transient expression of mutant
constructs. Inducible or constitutive
transgene expression

C. elegans models

Immunocytochemistry, assay of proteasome
activity in lysates using fluorescent substrates,
co-expression of construct with fluorescent—
degron reporter.

Co-expression of mutant ataxin-3 and a
ubiquitin-conjugated dsRed reporter

[13-15, 20, 29, 32]

[37]
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reporter [37] have been generated. It is also possible to
monitor activity of the UPS by quantifying the levels and
the degradation of well known proteasome substrates
such as p53 [15].

Disease targets and ligands

The idea that the UPS may be impaired in polyglutamine
expansion disorders initially came from studies showing
the labelling of polyglutamine aggregates with antibodies
raised against ubiquitin and proteasome subunits in cell
models [20,39], transgenic mice [21] and human post
mortem samples [3]. It was suggested that the sequestra-
tion of UPS components in aggregates and the altered sub-
cellular localisation of proteasomes could affect UPS
activity. The first study to assess proteasome activity used
fluorogenic substrates [15]. A shift in chymotrypsin-like
activity was demonstrated from cytosolic fractions to
aggregate-containing, precipitated fractions derived from
lysates from both a stable HD cell model (expressing
huntingtin exon 1 with a 150 polyglutamine repeat) and
brain lysates derived from R6/1 mice (expressing exon 1
of the huntingtin gene with a (CAG),,, repeat expansion
under control of the huntingtin promoter) [15]. Chymot-
rypsin-like activity was reduced in the cytosolic fraction
and increased in precipitated fractions derived from these
lysates when compared with control cells. This suggested
the altered localisation of proteasomes to aggregates. The
authors also demonstrated reduced degradation of p53.
This study suggested an impairment of the UPS in HD.
Soon after, this data was further supported by a study
using an EGFP-degron reporter [13]. When this reporter
was co-expressed with mutant huntingtin in cells, GFP flu-
orescence was increased more than two-fold when com-
pared with cells expressing wild-type huntingtin. This
observation implies a major impairment of proteasome
function since a greater than 50% decrease in chymot-
rypsin-like activity is required to obtain a 50% increase in
GFP fluorescence [13]. Similar results were found with the
A508 mutant cystic fibrosis membrane conductance regu-
lator (a protein that is unrelated to mutant huntingtin and
the ataxins, sharing only the propensity to aggregate), sug-
gesting that proteasome impairment is caused by aggre-
gate formation [13]. Similarly, an EGFP reporter
containing PEST sequences that target cytosolic proteins
for proteasome degradation has been used to monitor
proteasome activity in cells expressing ataxin-1 constructs
[29]; the polyglutamine expansion mutation in ataxin 1
reduced activity of this assay. Consistent with these data,
a reduction of chymotrypsin-like and peptidyl-glutamyl
activity has been demonstrated in lysates from human HD
post mortem brains and HD patient skin fibroblasts [30].
Similarly, inhibition of proteasome activity by ataxin-3
with an expanded CAG tract has been demonstrated in C.
elegans using an EGFP-degron reporter [37].

http://www.biomedcentral.com/1471-2091/8/S1/S2

Using the co-expression of NLS- or NES-tagged EGFP-
degrons and NES or NLS mutant polyglutamine con-
structs, a global impairment of the UPS was demon-
strated, regardless of the intracellular locations of the
proteins containing the expanded polyglutamine tracts or
the degron reporters [14]. Bennett et al. also disproved
two hypotheses proposing mechanisms for the inhibition
of proteasome activity. Contrary to the sequestration
hypothesis, they demonstrated proteasome inhibition in
the absence of visible aggregates. They also showed that
synthetic protein aggregates do not inhibit activity of the
26S proteasome function in vitro suggesting that UPS
impairment is unlikely to be caused by blocking of the
proteasome. Indeed, the decreases in nuclear proteasome
function by extra-nuclear mutant polyglutamine and vice
versa argued that the observed effects were independent of
interactions between mutant protein and the proteasome.
However, it has recently been demonstrated that, whilst
aggregates do not inhibit the proteasome, fibrillar forms
of huntingtin purified from transgenic mouse and human
post mortem brains do inhibit the 26S proteasome in vitro
[25].

Data contrary to the above, suggesting that the proteas-
ome is not impaired in polyglutamine expansion disor-
ders, comes from a variety of sources. SH-SY5Y cells stably
expressing mutant huntingtin do not show a difference in
the degradation of fluorogenic peptides, compared with
cells expressing wild-type huntingtin [32].

More recently, an increase in the chymotrypsin-like and
trypsin-like activities of the proteasome was observed in
lysates derived from the cortex and striatum of the HD94
conditional mouse model of HD [33]. This was attributed
to an increase in the levels of the proteasome subunits
LMP2 and LMP7, and to the induction of the immuno-
proteasome. Immunoproteasomes are generally induced
as part of the immune response (i.e. by interferon-
gamma) and possess subunit composition and cleavage
specificity favouring the production of peptides suitable
for antigen presentation. Increased proteasomal chymot-
rypsin-like activity has also been observed in brain lysates
from the R6/2 model of HD in comparison to non-trans-
genic littermates [34]. However, this study also demon-
strates no change in overall 26S proteasome activity and
shows that the nuclear proteasome activator REGy is not
involved in polyglutamine pathology, thus discounting it
as a therapeutic target [34].

One of the caveats of studies in cell culture is that they
express artificially high levels of mutant proteins. The role
of the proteasome in vivo has recently been tested using
the knock-in mouse model of SCA 7 crossed to a trans-
genic mouse expressing an EGFP-degron reporter [31].
Bowman et al. observed an increase in levels of the
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reporter in neurons at late stages of the disease. However,
this was not due to inhibition of proteasome activity but
correlated with an increase in mRNA encoding the EGFP-
degron reporter. This study raises the important point that
one should check that transcription of this in vivo reporter
is not perturbed when its steady state level changes, other-
wise one may in certain instances incorrectly ascribe accu-
mulations to proteasome dysfunction.

It must be ascertained whether UPS activity is impaired in
polyglutamine expansion disorders before the UPS is pro-
posed as a therapeutic target. However, two groups have
filed patents on the use of UPS modulators to treat neuro-
degenerative disorders (see additional file 1 for current
patents relating to the UPS in Huntington's disease and
the spinocerebellar ataxias). Based on the evidence that
the proteasome is compromised in HD, Thompson,
Marsh and Steffan have patented methods and reagents
for reducing polyglutamine toxicity (no applicant listed),
and Ramesh and Sean (ALS Therapy Development Foun-
dation) have patented the use of proteasome modulators
to treat neurodegenerative disorders. Lindquist and Duen-
nwald (Whitehead Institute for Biomedical Research)
have patented a method of screening for inhibitors of
huntingtin-induced UPS impairment.

Mutations in parkin, a ubiquitin E3 ligase, lead to auto-
somal recessive Parkinson's disease. Parkin deficiency
makes post-mitotic neurons more susceptible to excito-
toxicty, whilst parkin over-expression protects neurons
from kainate excitotoxicity and cell death [40]. Parkin also
co-localises with mutant huntingtin aggregates in HD
mice and human brains, and overexpression of parkin
enhances the clearance of the mutant proteins [41]. There-
fore, parkin is a feasible target for both the protection of
post-mitotic neurons from excitotoxicity and the treat-
ment of polyglutamine disorders by enhancing the clear-
ance of toxic polyglutamine-containing proteins.
Abeliovich and Staropoli (Columbia University) have pat-
ented parkin for this use.

There is evidence to suggest that polyglutamine-contain-
ing proteins are not efficiently degraded by the proteas-
ome and even directly inhibit activity of the UPS [23-25].
Therefore, glutamine dipeptides, tripeptides or polypep-
tides have been patented by Goldberg (Harvard Univer-
sity) as bacterial proteasome inhibitors for the treatment
of diseases such as those caused by Mycobacterium tubercu-
losis. Mycobacterium tuberculosis is highly resistant to killing
by human macrophages, a property thought to be con-
ferred by its proteasome [42]. Thus, inhibiting proteas-
ome activity may attenuate this resistance.

http://www.biomedcentral.com/1471-2091/8/S1/S2

New frontiers in drug discovery

One strategy for the treatment of polyglutamine expan-
sion disorders is to decrease levels of the toxic mutant pro-
tein. This could be achieved by increasing the clearance of
the mutant protein. Indeed, induction of autophagy by
treatment with the mTOR inhibitor rapamycin has been
demonstrated to reduce aggregation and increase survival
in HD cell and mouse models [43]. Autophagy is also
beneficial in SCA 3 and is generally neuroprotective
[44,45].

It is unclear whether proteins with an expanded poly-
glutamine tract are good proteasome substrates. Hunting-
tin interacts with the human ubiquitin-conjugating
enzyme E2-25K, which requires the polyglutamine
domain [46]. As previously described, parkin, an E3 ubiq-
uitin ligase, also co-localises with mutant huntingtin
aggregates in HD mice and human brains, and over-
expression of parkin enhances the clearance of the mutant
protein [41]. These data suggest that huntingtin may be a
proteasome substrate. Consistent with this, proteasome
inhibitors such as lactacystin and epoxomycin prevent
mutant huntingtin clearance in a conditional HD mouse
model or cell models after its expression is stopped [47].

Lactacystin, a microbial metabolite, was initially discov-
ered and isolated from actinomycetes on the basis of its
ability to induce neurite outgrowth in a murine neurob-
lastoma cell line [48]. Subsequent work demonstrated
that the biological effects of lactacystin resulted from its
ability to inhibit the proteasome [49]. Similarly, epoxo-
mycin was isolated from a strain of actinomycetes and
shown to exhibit potent anti-tumour and anti-inflamma-
tory effects [50]. The target of epoxomycin was later
shown to be the proteasome [51]. An increase in mutant
huntingtin aggregation and toxicity in HD cell models
after proteasome inhibition has also been demonstrated
[15,39,47,52,53]. Likewise, aggregation of poly-
glutamine-expanded ataxin-1 and ataxin-3 is also
increased after proteasome inhibition [54,55]. Further-
more, mutations in the genes encoding ubiquitin, ubiqui-
tin C-terminal hydrolase, ubiquitin  conjugase
homologous to human UbcE2D2 and ubiquitin conju-
gase homologous to human Ubc2EH enhance poly-
glutamine toxicity in Drosophila over-expressing mutant
ataxin-1 [56]. However, the proteasome is only able to
accommodate unfolded proteins and it has been demon-
strated that soluble mutant polyglutamine proteins are
degraded by the proteasome whereas the aggregated form
is resistant to degradation [57]. Likewise, the mutant form
of ataxin-1 is more resistant to degradation in vitro than
the wild-type form, although both the proteins are equally
ubiquitylated [55].
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Recently, it has been suggested that the proteasome is una-
ble to cleave between glutamine residues within poly-
glutamine tracts [23,24]. Thus, if one could upregulate
proteasome activity, one would possibly reduce the levels
of proteins with polyglutamine expansions and associated
flanking sequences. However, this would produce
increased levels of long isolated polyglutamine tracts and
such products are predicted to be more toxic than the
inputs that have flanking sequences. Nevertheless, these
long polyglutamine tracts are almost certainly degraded
by cytosolic and nuclear peptidases, since moderate poly-
glutamine stretches are not uncommon in mammalian
proteomes. It is unclear if the substrate capacity of such
peptidases could be overwhelmed if proteasome activity
were increased. In addition, modulation of the proteas-
ome may not be a good therapeutic strategy. The proteas-
ome has a key regulatory role and altering its rate of
degradation could have many side effects. One may be
able to use chemical chaperones such as trehalose or
Congo red to increase the degradation of polyglutamine-
containing proteins, as these agents shift the equilibrium
towards increasing the levels of soluble, monomeric pro-
teasome-accessible species and away from aggregates
[58,59].

Further studies are required to resolve the conflicting data
on UPS function in polyglutamine expansion disorders. It
is possible that more attention should be paid to measur-
ing levels of known endogenous proteasome substrates in
vivo to test this important hypothesis. The differences in
UPS activity seen in different models using a variety of
assays must be explained before the UPS is proposed as a
therapeutic target in HD and SCA.

Notes added in proof

Goldberg and colleagues have identified the peptidase
downstream of the proteasome that degrades poly-
glutamine tracts as putomycin sensitive aminopeptidase
[63].

In order to try to address if the proteasome is affected by
mutant huntingtin in vivo, Kopito and colleagues meas-
ured levels of polyubiquitin chains as an endogenous
biomarker [64]. The amount of polyubiquitin chains
within a cell was shown be a faithful indicator of ubiqui-
tin proteasome system function and elevated levels of
polyubiquitin chains were demonstrated in brain lysates
from R6/2 HD transgenic mice, the HdhQ150/Q150
knockin model of HD, and human HD post-mortem
brains. One question raised by this study is whether the
elevated levels of ubiquitin chains are necessarily due to
proteasome dysfunction, as opposed to an increase in the
ubiquitylation rate of substrates.

http://www.biomedcentral.com/1471-2091/8/S1/S2
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