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Abstract
Background: The transcription factor c-Myb is expressed in hematopoietic progenitor cells and
other rapidly proliferating tissues, regulating genes important for proliferation, differentiation and
survival. The DNA-binding domain (DBD) of c-Myb contains three tandemly arranged imperfect
repeats, designated Myb domain R1, R2 and R3. The three-dimensional structure of the DBD shows
that only the second and third Myb domains are directly involved in sequence-specific DNA-
binding, while the R1 repeat does not contact DNA and only marginally affects DNA-binding
properties. No structural information is available on the N-terminal 30 residues. Since deletion of
the N-terminal region including R1 plays an important role in oncogenic activation of c-Myb, we
asked whether this region confers properties beyond DNA-binding to the neighbouring c-Myb
DBD.

Results: Analysis of a putative RNA-binding function of c-Myb DBD revealed that poly(G)
preferentially inhibited c-Myb DNA-binding. A strong sequence-selectivity was observed when
different RNA polymers were compared. Most interesting, the poly(G) sensitivity was significantly
larger for a protein containing the N-terminus and the R1-repeat than for the minimal DNA-binding
domain.

Conclusion: Preferential inhibition of c-Myb DNA binding by poly(G) RNA suggests that c-Myb is
able to interact with RNA in a sequence-selective manner. While R2 and R3, but not R1, are
necessary for DNA-binding, R1 seems to have a distinct role in enhancing the RNA-sensitivity of c-
Myb.

Background
The transcription factor c-Myb is regulating genes
involved in proliferation and differentiation during
hematopoiesis in vertebrates (reviewed in [1,2]). c-Myb is
expressed at high levels in hematopoietic progenitor cells,
but becomes down-regulated when the cells reach termi-
nal differentiation. The critical role of c-Myb in the devel-
opment of hematopoietic cells is emphasized by the

embryonic lethality observed in mice with a c-mybnull

mutation, caused by failure of fetal hepatic hematopoiesis
[3]. c-Myb expression has also been detected in other rap-
idly proliferating tissues such as hair follicles and imma-
ture epithelial cells from colon, respiratory tract, skin and
retina [4,5]. c-Myb is essential for early T cell development
[6] and several c-Myb target genes play an important role
during T cell development, like CD4, TCRγ, TCRδ and
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RAG-2 [1,7]. The best characterized c-Myb target gene is
chicken mim-1, which is encoding a secretable component
of granules found in normal promyelocytes [8,9].

The Myb family of proteins is defined by the presence of a
well-conserved DNA-binding domain (DBD) composed
of Myb repeats [10]. Each repeat consists of about 50
amino acids with three regularly spaced tryptophans
forming a hydrophobic core [11-13]. The c-Myb DBD
contains three tandem imperfect Myb repeats (R1, R2 and
R3), located in the N-terminus of the protein. Determina-
tion of the structure of the c-Myb DBD has revealed that
each repeat folds into three well-defined helices forming a
helix-turn-helix-related structural motif, where the last
helix in R2 and R3 makes specific DNA contacts (recogni-
tion helices) [13-15]. The c-Myb protein harbours two
functional domains in addition to the DBD: a central acti-
vation domain and a C-terminal negative regulatory
domain. The viral counterpart of the chicken c-myb gene,
v-myb, found in the AMV and E26 viruses, has deletions in
both ends, leading to a v-Myb protein lacking the N-termi-
nus, most of the first Myb repeat (R1) and a large part of
the C-terminal negative regulatory domain (reviewed in
[16]).

The c-Myb DBD binds specifically to the sequence
PyAAC(T/G)G, termed the Myb recognition element
(MRE) [17-19]. The minimal sequence-specific DBD con-
sists of the two carboxy-terminal Myb repeats, R2R3
[20,21]. The role of the first Myb repeat, R1, is not fully
understood. It has been shown to be dispensable for spe-
cific DNA-binding [20,22], but bears striking similarities
to the other repeats regarding sequence and structure [23].
Some groups have reported that R1 stabilizes the protein-
DNA complex [24,25] and it has been proposed to allow
for more flexibility in the downstream region of the Myb
recognition sequence [26]. According to the recent three-
dimensional structure of the c-Myb DBD, the R1 repeat
does not contact DNA directly [15]. However, a long-dis-
tance electrostatic interaction is suggested to stabilize the
protein-DNA complex. Its free position in the complex
makes it possible that it could be involved in other func-
tions as well. This possibility is supported by the fact that
v-myb-like truncation of the N-terminus of c-Myb (until
the end of R1) has been shown to be sufficient for onco-
genic transformation of chicken bone marrow cells [27].
The R1 repeat could serve as a special regulatory module,
either acting as a target for molecular interactions or being
subject to post-translational modifications.

In the present work we address whether the N-terminal
region including the R1 repeat confers properties beyond
DNA-binding to c-Myb DBD. We sought evidence for a
putative RNA-binding function, analogous with several
other transcription factors harbouring dual DNA-RNA

binding properties. The motivation for investigating RNA-
interaction was the design of the c-Myb DBD, built of
repeating modules, a design resembling the structural
logic of zinc finger proteins. Some well-studied zinc fin-
gers have been found to use subsets of the repeats as RNA-
or DNA-binding units. The classical example is the Xeno-
pus zinc finger protein TFIIIA, which acts as a DNA-bind-
ing activator of 5S ribosomal RNA genes [28,29].
TFIIIAalso forms a stable complex with 5S rRNA in Xeno-
pus oocytes [30,31]. The nine zinc fingers of TFIIIA con-
tribute differentially to DNA- and RNA-binding; the N-
terminal triplet (1–3) dominating the DNA recognition
event while the middle triplet (4–6) is more important for
RNA-binding [32,33]. Another example of a zinc finger
with similar dual properties is the Wilms tumor suppres-
sor gene 1 (WT1) [34-36]. One splice variant (the +KTS
isoform) seems to be a better RNA-interacting form that
co-localizes with splicing proteins in nuclear speckles,
whereas another variant (the -KTS isoform) interacts
stronger with DNA and co-localizes with transcription fac-
tors [34,35].

The capability of specific interaction with both DNA and
RNA is not restricted to the zinc finger family of proteins.
The homeodomain protein bicoid of Drosophila acts both
as a transcription factor, activating zygotic segmentation
genes during blastoderm formation, and as a regulator of
mRNA translation by binding to the mRNA of another
homeodomain transcription factor, caudal [37,38]. Inter-
estingly, the homeodomain bears structural similarities to
the Myb domain, especially with respect to the presence of
a helix-turn-helix-related motif [12,13,15,21]. A final
example is p53, which has been reported to bind to both
single-stranded DNA and RNA in addition to its estab-
lished role as a sequence-specific DNA-binding protein
(reviewed in [39]). Murine p53 and human Cdk4 transla-
tion have actually been shown to be regulated by p53
mRNA binding.

Based on these occurrences of dual nucleic acid interac-
tions, we asked whether a similar design was found in c-
Myb. In particular, we raised the question whether the N-
terminal region including R1 might be implicated in RNA-
binding rather than DNA-binding. As a test of our pro-
posed RNA-binding function of c-Myb, we investigated
the effect of different homoribopolymers on c-Myb DNA-
binding. The homoribopolymer polyguanylic acid
(poly(G)) strongly inhibited the sequence-specific DNA-
binding of c-Myb, while poly(A), poly(C) and poly(U)
did not, indicative of an RNA-binding activity. The same
phenomenon, although weaker, was observed for A- and
B-Myb. An order-of-addition experiment indicated that
poly(G) bound directly to c-Myb in competition with
DNA. Interestingly, the DBD construct containing the N-
terminus and R1 was significantly more sensitive to
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poly(G) than the minimal DBD. Thus, the N-terminus
including R1 seems to be important for the RNA-sensitiv-
ity of c-Myb DBD.

Results
Differential binding to homoribopolymers has been used
as evidence for RNA-binding activity of various proteins
[40-45]. To investigate whether c-Myb and its R1 repeat is
involved in RNA-binding we first examined the effects of
homoribopolymers on c-Myb DNA-binding. The
sequence-specific DNA-binding was analyzed by the elec-

trophoretic mobility shift assay (EMSA) using two puri-
fied recombinant human c-Myb protein domains,
NR1R2R3 (amino acid 1–192) and R2R3 (amino acid 89–
192), in mixture. The assay was performed in the presence
of increasing amounts of the homoribopolymers poly(A),
poly(C), poly(G) and poly(U) (Fig. 1A). The DNA-bind-
ing of both proteins was strongly inhibited by poly(G) but
not by the other polymers. NR1R2R3 was most sensitive,
being inhibited when as little as 1 ng poly(G) was added.
We also tested two artificial RNAs, poly(I*C) and poly(I).
The former is a duplex RNA, and the latter is a variant of
poly(G) less prone to forming unusual structures, but
retaining some of the pairing properties of guanosines.
The duplex did not affect DNA-binding, while poly(I)
caused some inhibition at high concentrations (Fig. 1B).
To confirm that the observed inhibition by poly(G) was
indeed due to the added RNA, we carried out the poly(G)
inhibition experiment in the presence and absence of
RNase T1, an endoribonuclease that specifically cuts RNA
at the 3'-end of guanosine residues. As shown in Fig. 2,
DNA-binding was no longer inhibited by poly(G) after
RNase T1 treatment, confirming the RNA-dependence of
the inhibition.

To better compare the sensitivity of the two proteins, we
titrated the poly(G) inhibition (Fig. 3). The DNA-binding
of NR1R2R3 was significantly more sensitive to poly(G)
competition than R2R3, indicating that the N-terminus
including the R1 repeat was important for the inhibitory
effect.

Different plausible mechanisms for the observed poly(G)
inhibition of c-Myb sequence-specific DNA-binding may
be operating. Poly(G) might bind to c-Myb in direct com-
petition with DNA. Or, the binding of poly(G) to c-Myb
might be allosteric, inducing structural changes in c-Myb
that reduces its DNA-affinity. A third explanation might
be that poly(G) in a subtle way interacts with the DNA-
probe and blocks its specific interaction with c-Myb. To
clarify the mechanism of inhibition, we studied the
importance of the order of addition of probe and homor-
ibopolymers to the binding reaction (Fig. 4). Three situa-
tions were investigated, designated R, S and D in Fig. 4:
(R) RNA was mixed with the proteins before addition of
probe, (S) RNA and probe were mixed and added simul-
taneously to the proteins, (D) Probe (DNA) was mixed
with protein before addition of RNA. The reasoning was
that if the inhibition is allosteric of nature, the magnitude
of inhibition should be independent of the order of addi-
tion. If probe-interference is the mechanism, the strongest
inhibition should be observed with the simultaneous
addition of RNA and probe. If a competitive binding of
poly(G) to c-Myb is the case, the strongest inhibition
should be expected with the addition of RNA to protein
first and the weakest inhibition when the probe was

Inhibition of c-Myb DNA-binding by homoribopolymersFigure 1
Inhibition of c-Myb DNA-binding by homoribopolymers. 
Panel A: NR1R2R3 (40 fmol) and R2R3 (20 fmol) in mixture 
were incubated with 30 fmol MRE-containing DNA probe 
and 1 ng (lane 4,7,10 and 13), 10 ng (lane 5, 8, 11 and 14) and 
100 ng (lane 6, 9, 12 and 15) of homoribopolymers poly(A) 
(lane 4–6), poly(C) (lane 7–9), poly(G) (lane 10–12) and 
poly(U) (lane 13–15). The binding reactions were incubated 
for 15 minutes at 25°C and subsequently analyzed by EMSA 
and phosphorimaging. Lane 1, 2 and 3 show binding reactions 
without homoribopolymer addition, with NR1R2R3 alone in 
lane 1, R2R3 in lane 2 and the mixture of both in lane 3. Panel 
B: NR1R2R3 and R2R3 were combined in a binding reaction as 
in panel A, but now in the presence of 1 ng, 10 ng or 100 ng 
of the ribopolymers poly(G) (lanes 3–5), poly(I) (lanes 6–8), 
poly(I-C) (lanes 9–11) and 100 ng poly(A) (lane 12), respec-
tively. Lane 1 shows free probe, whereas lane 2 shows bind-
ing reaction without ribopolymer addition.
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added first. The last scenario was in fact what we observed,
indicating that c-Myb binds to poly(G) in direct competi-
tion with DNA-binding (Fig. 4). No inhibition at all was
observed when 100 ng of poly(A) was added. It is note-
worthy that the relative sensitivity of the two Myb forms
also changed as a function of the order of addition. Pre-
incubation with RNA enhanced the difference between
NR1R2R3 and R2R3 significantly, the first being fully inhib-
ited while the latter seemed to be almost unaffected. In
contrast, pre-incubation with DNA allowed the two forms
to bind with similar efficiency. This supports the notion
that the N-terminal region including the R1 repeat plays an
important role in conferring RNA-sensitivity to the
protein.

The homoribopolymer experiments reported above were
performed with 15 minutes of incubation at 25°C. To
exclude that the poly(G) effect was just a consequence of
slower complex formation, we repeated the experiment
with longer incubation times up to 90 minutes (results
not shown). No change in the inhibition pattern was
observed. This argues against the possibility that poly(G)
only reduces the rate of c-Myb/DNA complex formation
and indicates that the complex with RNA is highly stable.

We then asked whether the poly(G) inhibition was spe-
cific for c-Myb or if other Myb proteins exhibited the same
properties. Purified NR1R2R3 forms of the vertebrate Myb
relatives A- and B-Myb together with c-Myb were analyzed
by EMSA in the presence of different concentrations of
poly(G) and poly(A). As shown in Fig. 5, the DNA-bind-
ing of A- and B-Myb was clearly inhibited by poly(G),
although the effect was somewhat weaker than for c-Myb.
A-Myb behaved most similar to c-Myb, consistent with the
close resemblance between these two transcription factors
[46].

RNase treatment relieves poly(G)-mediated inhibition of c-Myb DNA-bindingFigure 2
RNase treatment relieves poly(G)-mediated inhibition of c-
Myb DNA-binding. NR1R2R3 and R2R3 were incubated with 
the MRE-containing DNA probe in the presence of 20 ng 
poly(G) homoribopolymer (lanes 3 and 4). The sample 
shown in lane 4 was in addition incubated with 2000 U 
RNase T1. To allow for RNase T1 mediated degradation of 
poly(G), all samples were incubated for 30 minutes at 37°C 
prior to addition of Myb-protein mixture. Binding reactions 
were subsequently incubated for 15 minutes at 25°C and 
analyzed by EMSA and phosphorimaging. Lanes 1 and 2 show 
free probe and binding reaction without homoribopolymer 
addition, respectively.

NR1R2R3

R2R3

poly(G)        -    -     +   +
RNase T1    -    -     -    +

1   2   3   4
Titration of the poly(G) inhibitionFigure 3
Titration of the poly(G) inhibition. NR1R2R3 (40 fmol) and 
R2R3 (20 fmol) were incubated separately with 20 fmol MRE-
containing radiolabelled probe and increasing amounts of 
poly(G). The binding reactions were incubated for 15 min-
utes at 25°C and subsequently analyzed by EMSA and phos-
phorimaging. The intensities of the complex bands were 
quantified by phosphorimaging software and plotted as per-
centage of the complex band intensity when no homori-
bopolymers was added.
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Discussion
The DBD of c-Myb contains three tandemly arranged
pseudo-repeats, R1, R2 and R3, among which R2 and R3
together are responsible for sequence-specific DNA-bind-
ing. The function of the first repeat, R1, has remained elu-
sive in particular because R1 does not directly contact
DNA. Its involvement in the process of oncogenic
activation of Myb suggests a specific biological role of R1.
In this report we have focused on the N-terminal region
including the R1 repeat of c-Myb, trying to find a function
beyond DNA-binding. A homoribopolymer inhibition
assay revealed a strong preferential inhibition of
sequence-specific DNA-binding by poly(G), suggesting
that c-Myb can interact with RNA in a sequence-selective
fashion. The most interesting observation was the finding
that the RNA-interference function of c-Myb was highly
dependent on the N-terminal region including R1. Upon
exposure to RNA before DNA, the protein domain con-
taining this region was severely inhibited by low concen-

trations of poly(G) while the protein domain lacking this
region was almost unaffected. What the precise biological
role of this novel RNA-interaction is, remains to be
elucidated.

Central to our examination of the RNA-binding hypothe-
sis is a homoribopolymer inhibition assay. Differential
binding to homoribopolymers has been exploited as evi-
dence for RNA-binding activity of several proteins, like the

Order-of-addition analysisFigure 4
Order-of-addition analysis. A mixture of 40 fmol NR1R2R3 
and 20 fmol R2R3 was incubated with 30 fmol MRE-containing 
DNA probe and 1 ng poly(G) (lane 4–6), 10 ng poly(G) (lane 
7–9) and 100 ng poly(A) (lane 10–12). In the cases marked R 
(for "RNA first", lane 4, 7 and 10), the proteins were incu-
bated with homoribopolymers for 15 minutes at 25°C before 
addition of DNA-probe and further incubation for 15 min-
utes at 25°C. The cases marked S (for ``simultaneous addi-
tion'', lane 5, 8 and 11) represents reactions where 
homoribopolymers and DNA probe were mixed before 
addition of protein and 15 minutes of incubation. Finally, the 
cases marked D (for ``DNA first'', lane 6, 9 and 12) show 
reactions where the protein were incubated with DNA first 
and then homoribopolymers were added. The reactions in 
lane 1–3 contained no homoribopolymers, NR1R2R3 protein 
alone in lane 1 and R2R3 protein alone in lane 2. The binding 
reactions were subsequently analyzed by EMSA and 
phosphorimaging.
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Comparison of A-, B- and c-Myb's poly(G) inhibitionFigure 5
Comparison of A-, B- and c-Myb's poly(G) inhibition. A-, B- 
and c-Myb NR1R2R3 (40 fmol each) were incubated sepa-
rately with 20 fmol radiolabelled MRE-containing DNA 
probe, 0.5 ng poly(G) (lane 2),1 ng poly(G) (lane 3), 5 ng 
poly(G) (lane 4) and 100 ng poly(A) (lane 5). Homoribopoly-
mers and proteins were first incubated for 15 minutes at 
25°C. Then the DNA-probe was added to the mixtures and 
subjected to a new incubation of the same time and tempera-
ture. The binding reactions were analyzed by EMSA and 
autoradiography. The extra incubation step without probe 
was added to the experimental setup because it enhanced 
the inhibitory effect (lanes marked R in Fig. 3).
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Ets-related transcription factor PU.1 [41], the neuronal
KH domain containing protein Nova-1 [43], the chloro-
plast ribosomal protein CS1 [44], and the recently cloned
RRM domain containing Ciona intestinalis protein RGC
[45]. Whether homoribopolymer binding reflects a
sequence-specific RNA binding or a more general RNA-
binding, like in the case of polypyrimidine-tract or
poly(A) binding proteins, requires further analysis in each
case.

In addition to the data presented above, the SELEX (sys-
tematic evolution of ligands by exponential enrichment)
technology was applied to search for more sequence-spe-
cific RNA patterns recognized by c-Myb. The SELEX proce-
dure did produce specific patterns, confirming the proper
behaviour of the experiment, but the selected RNAs did
not seem to mimic the homoribopolymer effect in terms
of inhibitory efficiency and content of G-bases (results not
shown). This does not argue against RNA-binding per se,
but indicates that c-Myb may not interact in a strictly
sequence-specific fashion with RNA. Rather, we believe
that the inhibitory RNA-effect seen in the homoribopoly-
mer experiments reflects an R1 -dependent RNA-interac-
tion where G-rich RNA interacts more avidly than other
RNAs. Why G-rich species are so much more potent inhib-
itors is not obvious. G-rich RNA molecules have special
folding capacities that could be recognized by c-Myb. This
is illustrated by the fact that poly(G) has been reported to
fold into several unique structures, including single, dou-
ble and four-stranded helices [47-49]. To investigate the
possibility that poly(dG) had a similar effect on c-Myb
DNA binding as poly(G), we added DNA oligonucle-
otides containing deoxy-guanine stretches of varying
length (1 to 5) to EMSA reactions. However, we were not
able to correlate the presence of poly(dG) stretches to any
inhibitory effects (results not shown). Neither did we
observe any strong inhibition when poly(I*C) or poly(I)
was added. It is quite probable therefore that unique
structural properties of poly(G) are critical to the mecha-
nism of inhibition.

The poly(G) inhibition was surprisingly strong. Due to
the undefined length of the homoribopolymers, it was
not evident how to precisely determine their molar con-
centrations. A fictitious poly(G)-length of 23 nucleotides,
which is the length of the probe, gives an RNA-concentra-
tion of about 6 nM when 1 ng is added to the binding
reactions. Consequently, a six-fold estimated molar excess
of poly(G) compared to the probe concentration (1 nM)
was sufficient to completely abolish sequence-specific
DNA-binding (Fig. 3).

We also analyzed the effects of a series of mononucle-
otides (results not shown). Interestingly, specific nucle-
otide triphosphates did in fact inhibit DNA-binding of c-

Myb with differences resembling the pattern observed
with ribopolymers in the present work. GTP produced the
most prominent effect among the nucleotides, while CTP
or UTP had little or no inhibitory effect. However, since
the inhibition was observed first in the mM concentration
range, significantly higher than the amount of poly(G)
producing the same level of inhibition, the GTP phenom-
enon seems to be only a weak reflection of the strong inhi-
bition we see with poly(G). Still, it is intriguing that we
observe the same specificity suggesting some type of
specific interactions between guanosines and the DNA-
binding domain of c-Myb.

The reported results represent evidence for an RNA-bind-
ing function of c-Myb. The dependence on the N-terminal
region including R1 is not total, in the sense that without
this region all RNA-interference disappears. Rather, the
presence of this region seems to enhance the sensitivity to
RNA-mediated inhibition several fold, making it possible
to find conditions where a Myb DBD containing this
region becomes fully inhibited while a minimal DBD
remains more or less unaffected (Fig. 4). At higher concen-
trations of poly(G) RNA, however, both proteins become
inhibited, suggesting that other parts of the DBD are
involved too. An appealing hypothesis would be that the
flexible second repeat were involved in interactions with
both types of macromolecules, cooperating with R1 for
RNA-binding and with R3 for DNA-binding. This would
explain why this repeat appears to be a more flexible pro-
tein domain than the other repeats. It is noteworthy that
a DNA-bound protein seems to be resistant to RNA-medi-
ated inhibition and that an RNA-associated protein does
not bind DNA even after prolonged incubation. We have
previously shown that c-Myb R2R3 undergoes a conforma-
tional change upon binding to DNA [14,50,51]. It is pos-
sible that the DNA-induced conformation is resistant to
RNA-interference and that RNA induces another confor-
mation that is unable to bind DNA; in other words that
the two nucleic acids lock the protein in two distinct
conformations.

It could be argued that we have shown mainly experi-
ments of the RNA-interference type, not directly
demonstrating RNA-binding. We have, however, several
lines of evidence indicating that RNA-interference occurs
through direct binding of c-Myb DBD to RNA. c-Myb NR1
R2 R3 was observed to interact with RNA in a North-West-
ern experiment where R2R3 did not, and c-Myb NR1R2R3
bound to RNA-linked beads (results not shown).

The identification of an increasing number of proteins
capable of both DNA- and RNA-binding challenges the
established picture of DNA-bound regulators with func-
tions confined to promoter-activation, and suggests a
broader function for some transcription factors [39]. The
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precise physiological role of the novel RNA-binding
property of c-Myb remains to be elucidated. An interesting
possibility to investigate is whether c-Myb plays a role
beyond transcriptional activation in biological processes
involving RNA, like splicing, capping, polyadenylation,
nuclear export or transport of RNA. A role in one or sev-
eral of these processes will fit the forthcoming model of a
coupling between transcription and the post-transcrip-
tional fate of mRNA [52,53].

Conclusions
We have obtained evidence that c-Myb DNA-binding is
preferentially inhibited by poly(G) RNA, indicative of a
sequence-selective RNA binding function. The N-termi-
nus of c-Myb, including the R1 repeat, was shown to
contribute substantially to this RNA-sensitivity. This find-
ing suggests a more specific function of the enigmatic first
Myb repeat than having a stabilizing effect on DNA-bind-
ing only.

Methods
Homoribopolymers
All homoribopolymers were purchased from Sigma
Aldrich. Purities were higher than 98% for all polymers.
The length distributions of the homoribopolymers were
determined by agarose gel electrophoresis and UV-shad-
owing. When compared to a dsDNA ladder, poly(A),
poly(C), poly(G)and poly(U) migrated with a
distribution corresponding to the following ranges: 200–
1600 bp, 250–1200 bp, 100–700 bp and 250–700 bp,
respectively (results not shown). RNase T1 was purchased
from Ambion, Inc.

Expression and purification of recombinant proteins
The following DBD subdomains were expressed in E. coli
(strain BL21 (DE3) LysS) using the T7 system [54]:
Human c-Myb residue 1–192 (NR1R2R3) and 89–192
(R2R3), human A-Myb 1–187 (NR1R2R3) and B-Myb 1–
183 (NR1R2R3). Expression and purification were per-
formed as previously described [46].

Electrophoretic mobility shift assay
Sequence-specific DNA-binding was examined by electro-
phoretic mobility shift assay (EMSA) as previously
described [55]. The binding reactions were performed in
20 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 10% glycerol, 0.1
mM DTT, 0.005% Triton X-100 and 50 mM NaCl in a
total volume of 20 µl. RNAguard (Amersham Biosciences)
RNAse inhibitor (6–20 U) was added to each reaction to
avoid degradation of the homoribopolymers.

The sequence of the MRE-containing DNA probe was
from the mim-1 promoter: 5'-GCATTATAACGGTTTTT-
TAGCGC-3'. Double-stranded DNA oligonucleotides
were 32P- labelled by T4 polynucleotide kinase according

to the specifications of the manufacturer (Ready-To-Go T4
Polynucleotide kinase, Amersham Biosciences). Radiola-
belled probe was purified on G-25 MicroSpin columns
(Amersham Biosciences) or by polyacrylamide gel electro-
phoresis with subsequent gel extraction.

Phosphorimaging
EMSA gels were transferred to 3 MM paper and dried for
90 minutes at 80°C in a vacuum gel drier. Radiolabelled
bands were detected with Molecular Imaging Screen BI
(Bio-Rad) and analyzed with a Bio-Rad GS-250 Phos-
phorImager. Quantitation of band intensities was per-
formed with the Molecular Analyst 2.0.1 software (Bio-
Rad).
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