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Background

Galactose is metabolised via the Leloir pathway [1] in
order to produce glucose-6-phosphate that can enter glyc-
olysis. The first committed step of this pathway is the

Abstract

Background: Galactokinase catalyses the first committed step of galactose catabolism in which
the sugar is phosphorylated at the expense of MgATP. Recent structural studies suggest that the
enzyme makes several contacts with galactose — five side chain and two main chain hydrogen bonds.
Furthermore, it has been suggested that inhibition of galactokinase may help sufferers of the genetic
disease classical galactosemia which is caused by defects in another enzyme of the pathway
galactose- | -phosphate uridyl transferase. Galactokinases from different sources have a range of
substrate specificities and a diversity of kinetic mechanisms. Therefore only studies on the human
enzyme are likely to be of value in the design of therapeutically useful inhibitors.

Results: Using recombinant human galactokinase expressed in and purified from E. coli we have
investigated the sugar specificity of the enzyme and the kinetic consequences of mutating residues
in the sugar-binding site in order to improve our understanding of substrate recognition by this
enzyme. D-galactose and 2-deoxy-D-galactose are substrates for the enzyme, but N-acetyl-D-
galactosamine, L-arabinose, D-fucose and D-glucose are all not phosphorylated. Mutation of
glutamate-43 (which forms a hydrogen bond to the hydroxyl group attached to carbon 6 of
galactose) to alanine results in only minor changes in the kinetic parameters of the enzyme.
Mutation of this residue to glycine causes a ten-fold drop in the turnover number. In contrast,
mutation of histidine 44 to either alanine or isoleucine results in insoluble protein following
expression in E. coli. Alteration of the residue that makes hydrogen bonds to the hydroxyl attached
to carbons 3 and 4 (aspartate 46) results in an enzyme that although soluble is essentially inactive.

Conclusions: The enzyme is tolerant to small changes at position 2 of the sugar ring, but not at
positions 4 and 6. The results from site directed mutagenesis could not have been predicted from
the crystal structure alone and needed to be determined experimentally.

phosphorylation of galactose at the expense of ATP - a  early onset cataracts. The enzyme has been

reaction that is catalysed by the enzyme galactokinase.

Lack of functional galactokinase in humans is one cause
of the inherited disease galactosemia [2-4]. The main
symptom of this disease, which is treatable by the com-
plete removal of lactose and galactose from the diet, is

purified and

characterised from a variety of different sources including
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bacteria [5], yeast [6,7], plants [8,9] and mammals [10-
12]. The primary sequence of these enzymes reveals only
limited sequence similarity except at five highly conserved
motifs [13]. The first of these motifs — the so-called galac-
tokinase signature motif - has been implicated in galac-
tose binding [12,13]. Recent structural data [14] on the
galactokinase from the bacterium Lactococcus lactis con-
firms this hypothesis and shows that most of the contacts
between the sugar and the protein are provided by resi-
dues in this motif (Fig. 1). The cavity in which galactose
binds is, in part, defined by a histidine residue (H43 in L.
lactis which is equivalent to H44 in the human enzyme).
The side-chain of this residue is located close to, but not
in contact with, the hydroxyl attached to carbon 6 of the
sugar.

Another, and more common, cause of galactosemia is
deficiency of the next enzyme in the Leloir pathway, galac-
tose-1-phosphate uridyl transferase (GALT) [2,3]. The
symptoms of this deficiency are generally more severe and
include, in addition to cataracts, damage to the brain, liver
and kidneys - effects which cannot be reversed or even
completely prevented by the exclusion of galactose and
lactose from the diet. This increased severity is believed to
result from the build up of the toxic metabolite galactose-
1-phosphate. The mechanism of galactose-1-phosphate
toxicity is not known. However, in brain at least it may be
linked to the substantial (five-fold in conditions designed
to mimic those observed in GALT-deficient patients)
increases in Mg-ATPase activity and consequent depletion
of ATP within the cell [15]. Recently, it has been suggested
that inhibition of galactokinase in GALT-deficient
patients might be used in addition to diet to prevent the
build up of galactose-1-phosphate and thus the develop-
ment of the more severe symptoms [16].

The yeast enzyme is reported as having high specificity for
the sugar substrate with no ability to phosphorylate glu-
cose, mannose, galactitol, arabinose, 2-deoxygalactose,
fucose or lactose [6]. The rat liver enzyme can phosphor-
ylate 2-deoxygalactose [11] and the enzyme from fenu-
greek seeds can use 2-deoxygalactose and fucose as
substrates [8]. A detailed study of the substrate specificity
of the E. coli galactokinase showed that the enzyme was
moderately active (less than 10-fold reduction in k)
with 2-deoxygalactose and 2-aminogalactose (but inactive
with N-acetylgalactosamine) and weakly active (10 to 20-
fold reduction in k_,,) with fucose [17]. The enzymes from
rat liver and yeast have the same kinetic mechanism as the
human one - an ordered ternary complex mechanism in
which ATP is the first substrate to bind [7,10,12]. In con-
trast the plant enzyme has an ordered mechanism in
which galactose binds first [8] and the enzyme from E. coli
has a random mechanism in which either substrate can
bind first [18].
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Figure |

The structure of the galactose and phosphate binding sites
from L. lactis galactokinase [14]. The protein was crystallised
in the presence of both galactose and inorganic phosphate
(both shown with yellow bonds). The following colour
scheme has been used for the atoms: Carbon = black, Oxy-
gen = red, Nitrogen = blue, Phosphate = pink. Distances of
less than 0.32 nm are shown as dashed lines. Figure courtesy
of Hazel Holden (University of Wisconsin).

No sugar specificity study has yet been carried out with the
human enzyme. The variety of substrate specificities and
the diversity of reaction mechanisms mean that it is
imperative that studies on the human enzyme be carried
out in order to inform, accurately, any future study of ther-
apeutically useful inhibitors of the galactokinase reaction.
We were particularly interested in sugars that differ at car-
bons 4 and 6 - parts of the molecule which make hydro-
gen bonds with the protein. D-Glucose differs from D-
galactose only in the configuration of the hydroxyl group
at position 4 (Fig 2). D-fucose (6-deoxy-D-galactose) dif-
fers from galactose in that it lacks a hydroxyl group at
position 6. L-arabinose lacks carbon 6 (and its associated
hydroxyl) altogether.

The importance of the aspartate and histidine residues in
the recognition of the sugar is underlined by the observa-
tion that the related sugar kinase, arabinose kinase, has an
almost identical sequence in motif I except that these two
residues are altered to glycine and isoleucine, respectively
[19]. We complemented our sugar specificity studies by
mutating three key, conserved residues (Glu-43, His-44
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Figure 2
The structures of the sugars used in this investigation.
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and Asp-46) in the sugar binding site of the human galac-
tokinase and assessing the kinetic consequences of these
changes. Interestingly although the abolition of the car-
bon 6 hydroxyl in arabinose and fucose results in no activ-
ity, deleting the side chain which makes a hydrogen bond
with this part of the sugar causes little change in the steady
state kinetics of the galactokinase reaction.

Results

Human galactokinase shows high specificity at carbons 4
and 6 of the sugar

The ability of recombinant human galactokinase to cata-
lyse the phosphorylation of sugars with structures similar
to the natural substrate galactose was tested. No activity
was observed with D-glucose, D-fucose, L-arabinose or N-
acetyl-D-galactosamine, even when these sugars were
present at high (100 mM) concentrations. Nor did any of
these sugars act as inhibitors of the galactokinase reaction
(data not shown). In contrast, 2-deoxy-D-galactose was a
substrate for the enzyme (Fig. 3). The kinetic parameters
were not much changed from those with galactose as sub-
strate with no change greater than four-fold.

Mutation of glutamate 43 to alanine has little effect on
the steady state kinetics

Since the elimination of the carbon-6 hydroxyl (in L-ara-
binose and D-fucose) results in a major reduction in the
sugar-enzyme affinity we mutated glutamate 43 to alanine
(the equivalent residue to Glu-42 in Fig. 1) in order to
eliminate the side chain which contacts this part of the
sugar. This mutant protein was soluble following expres-
sion in E. coli and could be purified. However, the yield
obtained was approximately one third that of the wild
type protein. Steady state kinetic analysis of the E43A
mutant (Fig. 4) revealed few changes in the kinetic param-
eters (Table 1). This mutant, in common with the wild-
type, has no detectable activity with D-fucose, L-arabinose
and D-glucose as substrates.

Changing the sequence to match that of arabinose kinase
results in insoluble protein

A double mutant E43G/H441 was constructed so as to
alter the galactokinase sequence to that of arabinose
kinase in the region which interacts with carbon 6.
Although this protein could be expressed in E. coli, the
majority was not in the soluble fraction following sonica-
tion of the bacterial cells. The small amount of protein
that was soluble had minimal activity with D-galactose,
D-glucose, L-arabinose or D-fucose (data not shown).
Similar results were observed with the single mutants
H441 and H44A. The single amino acid change, E43G
does result in soluble, active protein (Fig. 4) although like
E43A the yield is reduced on purification. This mutation
causes an approximate ten-fold reduction in the turnover
number (Table 1). However the specificity constants for
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Figure 3

2-deoxy-D-galactose (2dG) is a substrate for human galac-
tokinase. Steady state kinetic analysis was carried out as
described in Materials and Methods. Each k., ., value is
derived, using non-linear curve-fitting [25], from a set of
rates data at a single sub-saturating substrate concentration.
Error bars represent the standard error in K, ., as derived
by from the fitting process. The lines are non-linear curve fits
of the ke,,p, data to the equation ke, .o, = ke [substrate]/(K,
+ [substrate]). The following parameters were derived from
this fitting: k ,, = 4.8 £ 0.3 s, K Arp =59 9 uM; K 546 =
1100 £ 110 pM; k /K a1p= (8.1 £0.8) x [0 L. mol!.s7!; k. /

cat’ ’ Mcat’

Km,ZdG = 4200 + 270 I.mol".s".

both substrates are essentially unchanged compared to
the wild-type.
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Kinetic analysis of the soluble mutants, E43A and E43G.
Error bars represent the standard error as derived from the
non-linear curve fitting (see materials and methods). The
kinetic parameters derived from these curve fits are detailed
in table |.

Alteration of aspartate 46 results in an inactive enzyme

Mutation of the residue that contacts C;-OH and C,-OH
on galactose results in a protein which can be readily
expressed and purified from E. coli (the yield after purifi-
cation was comparable to wild-type, data not shown).
However, we were unable to detect any activity towards D-
galactose, L-arabinose, D-fucose and D-glucose with this
mutant, even at high concentrations of substrate (50 mM)

http://www.biomedcentral.com/1471-2091/4/16

and enzyme (0.48 pM enzyme compared to 0.067 pM
with the E43A and E43G mutants).

Discussion

The availability of both the structure of the galactokinase
from L. lactis [14] and the readily expressible human form
of the enzyme [12] mean that, for the first time, it is pos-
sible to interrogate the structure and function of the
enzyme by site-directed mutagenesis. Here we report the
results of some mutations to residues in motif I, which
contributes most of the residues involved in galactose
binding and recognition.

Elimination of the Glu-43 to C4,-OH hydrogen bond con-
tact by mutating the side chain to alanine resulted in no
major changes in the steady state kinetic parameters. In
contrast altering this residue to glycine caused a substan-
tial drop in the turnover number with no corresponding
drop in the specificity constants. A reduction in k_, with
no change in the specificity constant can only occur if K,
drops by a similar factor to the turnover number. It is
often (erroneously) assumed that K is a measure of the
enzyme-substrate affinity. In fact it is a summed measure
of the interaction between the substrate and the enzyme
across all stages of the catalytic cycle (not just the initial
enzyme-substrate encounter). In contrast, the specificity
constant is a rate constant which does report on this initial
encounter [20]. Thus, in the case of E43G the kinetic con-
stants tell us that the mutation causes little or no change
in the rate of interaction between either ATP or galactose
and the enzyme, that in at least one stage in the catalytic
cycle the enzyme binds each substrate more tightly than
the wild-type but that the overall rate of catalysis is
reduced. A similar situation was observed in our studies of
disease-causing mutants in human galactokinase - the
mutant G346S which had a severely impaired k_,, but a
reduction in the K, for ATP means that the specificity con-
stant for this substrate is not much changed compared to
wild-type [12].

It is interesting to note that although elimination of the
Glu-43 side chain causes only modest changes to the
kinetic parameters of galactokinase, whereas the elimina-
tion of the group it hydrogen bonds to in the sugar (C,-
OH) in either D-fucose or L-arabinose, results in the com-
plete loss of detectable activity. Furthermore, these com-
pounds are not inhibitors of the reaction, suggesting that
they have essentially no affinity for the enzyme. This
apparently paradoxical result can be explained by the dif-
ferent thermodynamic consequences of eliminating the
charged and uncharged group in a charged hydrogen
bond. Deletion of the uncharged group (i.e., in this case,
the hydroxyl group on the sugar) leaves the charged car-
boxyl group in the protein unpaired. This is considerably
energetically destabilised compared to the hydrogen bond
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Table I: Kinetic parameters of the mutant galactokinases. All reactions were carried out at 37°C as described in the materials and
methods. Values were derived by non-linear curve fitting as implemented in the program GraphPad Prism and are shown * standard

error as derived from this procedure.

Mutant Kegels™! K ga/ M
Wild Type() 87+05 970 + 220
E43A 6.7 £ 0.02 1900 + 500
E43G 0.9 £0.02 140 = 10
H44A

H44l

E43G/H44l

D46A

Kmate/HM kcm/Km‘ga,/I.moI".s-I kcat/Km‘ATIPI I?5 x |.mol-
s
34+ 4 8900 + 2900 26+04
35+£03 3400 £ 430 1.9 £ 0.009
39+0.6 6100 + 330 24+03
Not soluble
Not soluble
Not soluble

No detectable activity

Notes (1) Previously reported in [12]

(approximately 15 to 20 kJ.mol-! [21,22]). In contrast,
elimination of the charged group leaving the uncharged
group is only slightly destabilised compared to the hydro-
gen bond (2 to 6 kJ.mol-! [21]). Mutating Glu-43 to gly-
cine not only eliminates the charged component of the
hydrogen bond, but also increases the flexibility of the
peptide backbone. This increased mobility is the most
likely explanation for the dramatic effects seen with this
mutant on k.. A less rigid active site structure may well
have a lower affinity for the transition state and, conse-
quently, result in reduced activity.

Mutation of His-44 to either alanine or isoleucine resulted
in insoluble protein following expression in E. coli. In our
previous studies of the disease-causing mutations in
human galactokinase, mutation of this residue to tyrosine
resulted in an enzyme which was soluble but which was
deficient in its interaction with galactose [12]. Taken
together this suggests that, in addition to any catalytic
roles that this residue might play, it also has an important
role in maintaining the structural integrity of the protein
as a whole.

Although it might be expected that the D46A mutation
would have similar consequences to E43A since both
eliminated the charged group involved in two charged
hydrogen bonds, it does not. Indeed this mutant has no
detectable galactokinase activity. It is possible that this
residue has important roles to play in forming the active
site prior to galactose binding. Detailed speculation may
therefore have to wait until the availability of a structure
in the absence of a bound sugar molecule.

The combination of a readily expressible form of the
human galactokinase [12] and the first crystal structure of
the enzyme [14] mean that it is possible to design muta-
tions in the enzyme to address specific questions. These
results extend our studies on the enzyme which previously

concentrated on point mutations which had been impli-
cated in causing the genetic disease galactosemia [12]. In
that study we looked at several mutations either in motif
I (G36R, H44Y), close to it in sequence (P28T, V32M) or
close in space (G346S, G347S, G349S). Of these, three
(P28T, V32M and G36R) proved to be insoluble on induc-
tion in E. coli suggesting that, like H44A, H441 and E43G/
H441 in the current study these mutations affect the over-
all folding and stability of the protein. The soluble
mutants (H44Y, G346S, G347S and G349S) all had effects
on the constants which report on the interaction between
the enzyme and galactose (K, g, and ke, /Ky, .,) suggest-
ing that these residues formed part of, or were close to, the
sugar binding site - a conclusion confirmed by the recent
crystal structure [14].

Conclusions

Recently, there has been a resurgence of interest in galac-
tokinase as an enzyme and in the type galactosemia
caused by its deficiency. If it does prove clinically viable to
treat GALT-deficient galactosemia sufferers with galactoki-
nase inhibiting drugs [16], the design of these drugs will
require a thorough understanding of both the structure of
the sugar binding site and how this site interacts with the
substrate. Here we show that the enzyme will tolerate
minor changes in the substrate at position 2 of the sugar
ring, but not at positions 4 and 6. Alteration of residues by
site directed mutagenesis which are close to, or in contact,
with the sugar result in variety of effects ranging from
insoluble protein through inactive enzyme to little
observable change. These results could not have been pre-
dicted directly from the crystal structure and had to be
determined experimentally. The combined approach of
structural analysis and mutagenesis is likely to yield fur-
ther insights in the coming months and years.
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Methods

Protein expression and purification

Human galactokinase was expressed in E. coli as a Hisg-
fusion protein and purified from this source by nickel aga-
rose chromatography as described previously [12]. Point
mutations were introduced in to the coding sequence
using the QuikChange method [23] and the mutant pro-
teins expressed and purified using the same protocol. The
full DNA sequence of each mutant galactokinase was ver-
ified (DNA Sequencing Service, Department of Medicine,
University of Manchester). Protein concentrations were
estimated by the method of Bradford [24].

Galactokinase kinetics

The kinetics of the galactokinase reaction was measured
by coupling the production of ADP to the reactions of
pyruvate kinase and lactate dehydrogenase at 37°C in a
total reaction volume of 150 pl [12,13]. The decrease in
Asyonm: Which results from the oxidation of NADH, was
measured in a Multiskan Ascent micro-titre plate reader.
The reaction mix contained 20 mM HEPES-OH pH 8.0,
150 mM NaCl, 5 mM MgCl,, 1 mM KCIl, 10%(v/v) glyc-
erol, 1 mM NADH, 1 mM DTT, 400 uM PEP, 7.5 U pyru-
vate kinase (Sigma) and 10 U lactate dehydrogenase
(Sigma). All sugars were purchased from Sigma-Aldrich.
Reactions were initiated by the addition of enzyme.

It has previously been established that human galactoki-
nase follows an ordered, ternary complex mechanism [12]
for which the rate equation is given by v = (k. [E],- [gal].
[ATP])/(KI,ATP'Km,gal + Km,ge\l' [ATP] + Km,ATP' [gal] + [ATP]'
[gal]) where [gal] and [ATP] are the concentrations of
galactose and ATP respectively, K; ,;pis a constant relating
to the dissociation of the enzyme-ATP complex and K, 4,
and K, yp are the Michaelis constants for galactose and
ATP respectively. At any constant value of [gal] this simpli-
fies t0 v = Kepapp [Elo- [ATP]/(Ky arp,app + [ATP]) where
Keatapp = Kear [8al]/ (K gar + [82l]). A similar situation holds
when [ATP] is held constant [12]. A5 x 5 concentration
grid with a range of sub-saturating constant concentra-
tions of ATP and galactose was set up. Each row or column
gave a set of rates at a constant concentration of one sub-
strate. Using these data, Kk ,,p, for each value of [galac-
tose] and [ATP] and the associated standard error were
calculated using non-linear curve fitting [25]. Secondary
plots were then constructed in which these k., values
were plotted against the relevant substrate concentration.
Non-linear curve fitting [25] was then used to derive the
absolute k_,,, K, and k_,/K_, values and their associated
standard errors. This method has the advantage of avoid-
ing using "saturating" concentrations of substrate which
may not be truly saturating, may not be easy to obtain
experimentally and may result in unwanted substrate
inhibition [26].
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